IDEAS home Printed from https://ideas.repec.org/a/bla/anzsta/v62y2020i4p508-535.html
   My bibliography  Save this article

Estimation of Poisson mean with under‐reported counts: a double sampling approach

Author

Listed:
  • Debjit Sengupta
  • Tathagata Banerjee
  • Surupa Roy

Abstract

Count data arising in various fields of applications are often under‐reported. Ignoring undercount naturally leads to biased estimators and inaccurate confidence intervals. In the presence of undercount, in this paper, we develop likelihood‐based methodologies for estimation of mean using validation data. The asymptotic distributions of the competing estimators of the mean are derived. The impact of ignoring undercount on the coverage and length of the confidence intervals is investigated using extensive numerical studies. Finally an analysis of heat mortality data is presented.

Suggested Citation

  • Debjit Sengupta & Tathagata Banerjee & Surupa Roy, 2020. "Estimation of Poisson mean with under‐reported counts: a double sampling approach," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 62(4), pages 508-535, December.
  • Handle: RePEc:bla:anzsta:v:62:y:2020:i:4:p:508-535
    DOI: 10.1111/anzs.12308
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/anzs.12308
    Download Restriction: no

    File URL: https://libkey.io/10.1111/anzs.12308?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter Fader & Bruce Hardie, 2000. "A note on modelling underreported Poisson counts," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(8), pages 953-964.
    2. Wai-Yin Poon & Hai-Bin Wang, 2010. "Bayesian Analysis of Multivariate Probit Models with Surrogate Outcome Data," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 498-520, September.
    3. Zhijian Chen & Grace Y. Yi & Changbao Wu, 2011. "Marginal methods for correlated binary data with misclassified responses," Biometrika, Biometrika Trust, vol. 98(3), pages 647-662.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kinshuk Jerath & Anuj Kumar & Serguei Netessine, 2015. "An Information Stock Model of Customer Behavior in Multichannel Customer Support Services," Manufacturing & Service Operations Management, INFORMS, vol. 17(3), pages 368-383, July.
    2. Vidhura Tennekoon, 2017. "Counting unreported abortions: A binomial-thinned zero-inflated Poisson model," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 36(2), pages 41-72.
    3. Tang, Man-Lai & Qiu, Shi-Fang & Poon, Wai-Yin, 2012. "Confidence interval construction for disease prevalence based on partial validation series," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1200-1220.
    4. Brajendra C. Sutradhar, 2022. "Fixed versus Mixed Effects Based Marginal Models for Clustered Correlated Binary Data: an Overview on Advances and Challenges," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 259-302, May.
    5. Liu, Feng & Zhao, Shaoqiong & Li, Yang, 2017. "How many, how often, and how new? A multivariate profiling of mobile app users," Journal of Retailing and Consumer Services, Elsevier, vol. 38(C), pages 71-80.
    6. Eduardo Fé & Richard Hofler, 2013. "Count data stochastic frontier models, with an application to the patents–R&D relationship," Journal of Productivity Analysis, Springer, vol. 39(3), pages 271-284, June.
    7. Surupa Roy & Kalyan Das & Angshuman Sarkar, 2013. "Analysis of binary data with the possibility of wrong ascertainment," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(3), pages 293-310, August.
    8. Rana, Subrata & Roy, Surupa & Das, Kalyan, 2018. "Analysis of ordinal longitudinal data under nonignorable missingness and misreporting: An application to Alzheimer’s disease study," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 62-77.
    9. Michael Braun & Peter S. Fader & Eric T. Bradlow & Howard Kunreuther, 2006. "Modeling the "Pseudodeductible" in Insurance Claims Decisions," Management Science, INFORMS, vol. 52(8), pages 1258-1272, August.
    10. Qihuang Zhang & Grace Y. Yi, 2023. "Generalized network structured models with mixed responses subject to measurement error and misclassification," Biometrics, The International Biometric Society, vol. 79(2), pages 1073-1088, June.
    11. Qiu, Shi-Fang & Poon, Wai-Yin & Tang, Man-Lai, 2016. "Confidence intervals for an ordinal effect size measure based on partially validated series," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 170-192.
    12. Lizbeth Naranjo & Luz Judith R. Esparza & Carlos J. Pérez, 2020. "A Hidden Markov Model to Address Measurement Errors in Ordinal Response Scale and Non-Decreasing Process," Mathematics, MDPI, vol. 8(4), pages 1-12, April.
    13. Tong-Yu Lu & Wai-Yin Poon & Siu Cheung, 2014. "A Unified Framework for the Comparison of Treatments with Ordinal Responses," Psychometrika, Springer;The Psychometric Society, vol. 79(4), pages 605-620, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:anzsta:v:62:y:2020:i:4:p:508-535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1369-1473 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.