IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v98y2011i3p647-662.html
   My bibliography  Save this article

Marginal methods for correlated binary data with misclassified responses

Author

Listed:
  • Zhijian Chen
  • Grace Y. Yi
  • Changbao Wu

Abstract

Misclassification is a longstanding concern in medical research. Although there has been much research concerning error-prone covariates, relatively little work has been directed to problems with response variables subject to error. In this paper we focus on misclassification in clustered or longitudinal outcomes. We propose marginal analysis methods to handle binary responses which are subject to misclassification. The proposed methods have several appealing features, including simultaneous inference for both marginal mean and association parameters, and they can handle misclassified responses for a number of practical scenarios, such as the case with a validation subsample or replicates. Furthermore, the proposed methods are robust to model misspecification in a sense that no full distributional assumptions are required. Numerical studies demonstrate satisfactory performance of the proposed methods under a variety of settings. Copyright 2011, Oxford University Press.

Suggested Citation

  • Zhijian Chen & Grace Y. Yi & Changbao Wu, 2011. "Marginal methods for correlated binary data with misclassified responses," Biometrika, Biometrika Trust, vol. 98(3), pages 647-662.
  • Handle: RePEc:oup:biomet:v:98:y:2011:i:3:p:647-662
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asr035
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qihuang Zhang & Grace Y. Yi, 2023. "Generalized network structured models with mixed responses subject to measurement error and misclassification," Biometrics, The International Biometric Society, vol. 79(2), pages 1073-1088, June.
    2. Brajendra C. Sutradhar, 2022. "Fixed versus Mixed Effects Based Marginal Models for Clustered Correlated Binary Data: an Overview on Advances and Challenges," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 259-302, May.
    3. Debjit Sengupta & Tathagata Banerjee & Surupa Roy, 2020. "Estimation of Poisson mean with under‐reported counts: a double sampling approach," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 62(4), pages 508-535, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:98:y:2011:i:3:p:647-662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.