IDEAS home Printed from https://ideas.repec.org/a/bla/anzsta/v62y2020i3p322-339.html
   My bibliography  Save this article

Inference for short‐memory time series models based on modified empirical likelihood

Author

Listed:
  • Ramadha D. Piyadi Gamage
  • Wei Ning

Abstract

Empirical likelihood (EL) has been extensively studied to make statistical inferences for independent and dependent observations. However, it experiences the problem of under‐coverage which causes the coverage probability of the EL‐based confidence intervals to be lower than the nominal level, especially in small sample sizes. In this paper, we propose modified versions of different EL‐related methods to tackle this issue, including the adjusted EL, the EL with theoretical Bartlett correction and the EL with estimated Bartlett correction for short‐memory time series models. Asymptotic distributions of the likelihood‐type statistics are established as the standard chi‐square distribution. Simulations are conducted to compare coverage probabilities with other existing methods under different distributions. Two real data set applications demonstrate how to construct confidence regions of parameters.

Suggested Citation

  • Ramadha D. Piyadi Gamage & Wei Ning, 2020. "Inference for short‐memory time series models based on modified empirical likelihood," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 62(3), pages 322-339, September.
  • Handle: RePEc:bla:anzsta:v:62:y:2020:i:3:p:322-339
    DOI: 10.1111/anzs.12305
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/anzs.12305
    Download Restriction: no

    File URL: https://libkey.io/10.1111/anzs.12305?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liu, Yukun & Yu, Chi Wai, 2010. "Bartlett correctable two-sample adjusted empirical likelihood," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1701-1711, August.
    2. Ramadha D. Piyadi Gamage & Wei Ning & Arjun K. Gupta, 2017. "Adjusted Empirical Likelihood for Time Series Models," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 336-360, November.
    3. Chan, Ngai Hang & Ling, Shiqing, 2006. "Empirical Likelihood For Garch Models," Econometric Theory, Cambridge University Press, vol. 22(3), pages 403-428, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramadha D. Piyadi Gamage & Wei Ning & Arjun K. Gupta, 2017. "Adjusted Empirical Likelihood for Time Series Models," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 336-360, November.
    2. Kai Yang & Xue Ding & Xiaohui Yuan, 2022. "Bayesian empirical likelihood inference and order shrinkage for autoregressive models," Statistical Papers, Springer, vol. 63(1), pages 97-121, February.
    3. Feifan Jiang & Lihong Wang, 2018. "Adjusted blockwise empirical likelihood for long memory time series models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 319-332, June.
    4. Li, Minqiang & Peng, Liang & Qi, Yongcheng, 2011. "Reduce computation in profile empirical likelihood method," MPRA Paper 33744, University Library of Munich, Germany.
    5. Zhang, Rongmao & Peng, Liang & Qi, Yongcheng, 2012. "Jackknife-blockwise empirical likelihood methods under dependence," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 56-72, February.
    6. Hill, Jonathan B. & Prokhorov, Artem, 2016. "GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference," Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.
    7. Yukun Liu & Changliang Zou & Zhaojun Wang, 2013. "Calibration of the empirical likelihood for high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 529-550, June.
    8. Mo Zhou & Liang Peng & Rongmao Zhang, 2021. "Empirical likelihood test for the application of swqmele in fitting an arma‐garch model," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(2), pages 222-239, March.
    9. Wu, Rongning & Cao, Jiguo, 2011. "Blockwise empirical likelihood for time series of counts," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 661-673, March.
    10. Li, Dong & Li, Muyi & Wu, Wuqing, 2014. "On dynamics of volatilities in nonstationary GARCH models," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 86-90.
    11. Zhang, Xiuzhen & Lu, Zhiping & Wang, Yangye & Zhang, Riquan, 2020. "Adjusted jackknife empirical likelihood for stationary ARMA and ARFIMA models," Statistics & Probability Letters, Elsevier, vol. 165(C).
    12. Yun Gong & Zhouping Li & Liang Peng, 2010. "Empirical likelihood intervals for conditional Value‐at‐Risk in ARCH/GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(2), pages 65-75, March.
    13. Tsao, Min & Wu, Fan, 2015. "Two-sample extended empirical likelihood for estimating equations," Journal of Multivariate Analysis, Elsevier, vol. 142(C), pages 1-15.
    14. Kun Chen & Ngai Hang Chan & Chun Yip Yau, 2020. "Bartlett correction of frequency domain empirical likelihood for time series with unknown innovation variance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1159-1173, October.
    15. Canepa Alessandra, 2022. "Small Sample Adjustment for Hypotheses Testing on Cointegrating Vectors," Journal of Time Series Econometrics, De Gruyter, vol. 14(1), pages 51-85, January.
    16. Chimka Justin R. & Wang Qilu, 2013. "Assessment of Traditional Demerits and a New Ordinal Alternative," Stochastics and Quality Control, De Gruyter, vol. 28(2), pages 71-76, December.
    17. Xing, Dun-Zhong & Li, Hai-Feng & Li, Jiang-Cheng & Long, Chao, 2021. "Forecasting price of financial market crash via a new nonlinear potential GARCH model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    18. Li, Jinyu & Liang, Wei & He, Shuyuan, 2011. "Empirical likelihood for LAD estimators in infinite variance ARMA models," Statistics & Probability Letters, Elsevier, vol. 81(2), pages 212-219, February.
    19. Hill, Jonathan B., 2015. "Robust Generalized Empirical Likelihood for heavy tailed autoregressions with conditionally heteroscedastic errors," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 131-152.
    20. Wu, Fan & Tsao, Min, 2014. "Two-sample extended empirical likelihood," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 81-87.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:anzsta:v:62:y:2020:i:3:p:322-339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1369-1473 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.