IDEAS home Printed from https://ideas.repec.org/a/bla/ajarec/v65y2021i2p472-490.html
   My bibliography  Save this article

A dynamic model of optimal lime application for wheat production in Australia

Author

Listed:
  • Sanaz Shoghi Kalkhoran
  • David Pannell
  • Maksym Polyakov
  • Ben White
  • Morteza Chalak Haghighi
  • Amin William Mugera
  • Imma Farre

Abstract

Soil acidification due to crop removal and the use of acidifying fertilisers reduce land productivity in many agricultural systems worldwide. The most common remedy is to apply lime to the soil surface. An alternative approach is to incorporate lime into the sub‐soil. This is a more expensive option, but it substantially reduces the time required to reduce acidity in the sub‐soil horizons. This paper presents a dynamic optimisation model to determine optimal rates, frequency and methods of lime application for a wheat monoculture system in the northern part of the Western Australian wheatbelt. Results show that optimal application rates depend on rainfall levels and soil‐acidity conditions. The net present value of profit is not sensitive to the frequency of lime application. Incorporating lime into the sub‐soil increases the net present value of profit, but only by a small amount: two to four per cent in most scenarios modelled. In the process, sub‐soil lime application reduces both the optimal lime application rate and the time required for the soil pH to increase to a target level.

Suggested Citation

  • Sanaz Shoghi Kalkhoran & David Pannell & Maksym Polyakov & Ben White & Morteza Chalak Haghighi & Amin William Mugera & Imma Farre, 2021. "A dynamic model of optimal lime application for wheat production in Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(2), pages 472-490, April.
  • Handle: RePEc:bla:ajarec:v:65:y:2021:i:2:p:472-490
    DOI: 10.1111/1467-8489.12424
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-8489.12424
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-8489.12424?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Shoghi Kalkhoran, Sanaz & Pannell, David J. & Thamo, Tas & White, Benedict & Polyakov, Maksym, 2019. "Soil acidity, lime application, nitrogen fertility, and greenhouse gas emissions: Optimizing their joint economic management," Agricultural Systems, Elsevier, vol. 176(C).
    2. David J. Pannell, 2006. "Flat Earth Economics: The Far-reaching Consequences of Flat Payoff Functions in Economic Decision Making," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 28(4), pages 553-566.
    3. Lukin, Vladimir V. & Epplin, Francis M., 2003. "Optimal frequency and quantity of agricultural lime applications," Agricultural Systems, Elsevier, vol. 76(3), pages 949-967, June.
    4. Kingwell, Ross S., 2011. "Managing complexity in modern farming," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(1), pages 1-23.
    5. Mulungu, Kelvin & Tembo, Gelson & Kabwe, Stephen, 2012. "An Economic Analysis of Precision Application of Climate at Reduced Rates," 2012 Eighth AFMA Congress, November 25-29, 2012, Nairobi, Kenya 159407, African Farm Management Association (AFMA).
    6. Ross Kingwell, 2011. "Managing complexity in modern farming," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(1), pages 12-34, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md Shawon Mahmud & Khim Phin Chong, 2022. "Effects of Liming on Soil Properties and Its Roles in Increasing the Productivity and Profitability of the Oil Palm Industry in Malaysia," Agriculture, MDPI, vol. 12(3), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shoghi Kalkhoran, Sanaz & White, Benedict & Polyakov, Maksym & Chalak, Morteza & Mugera, Amin William & Pannell, David J., 2018. "A Dynamic Optimization Model of Agricultural Lime Application," 2018 Annual Meeting, August 5-7, Washington, D.C. 274340, Agricultural and Applied Economics Association.
    2. Doole, Graeme J. & Romera, Alvaro J., 2015. "Trade-offs between profit, production, and environmental footprint on pasture-based dairy farms in the Waikato region of New Zealand," Agricultural Systems, Elsevier, vol. 141(C), pages 14-23.
    3. Weifeng Xu & Qingsong Ruan & Chang Liu, 2019. "Can the Famous University Experience of Top Managers Improve Corporate Performance? Evidence from China," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    4. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.
    5. Gómez-Limón, José A. & Gutiérrez-Martín, Carlos & Riesgo, Laura, 2016. "Modeling at farm level: Positive Multi-Attribute Utility Programming," Omega, Elsevier, vol. 65(C), pages 17-27.
    6. Nazrul Islam & Vilaphonh Xayavong & Ross Kingwell, 2014. "Broadacre farm productivity and profitability in south-western Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(2), pages 147-170, April.
    7. Nuthall, Peter L., 2012. "The intuitive world of farmers – The case of grazing management systems and experts," Agricultural Systems, Elsevier, vol. 107(C), pages 65-73.
    8. Kotir, Julius H. & Bell, Lindsay W. & Kirkegaard, John A. & Whish, Jeremy & Aikins, Kojo Atta, 2022. "Labour demand – The forgotten input influencing the execution and adoptability of alternative cropping systems in Eastern Australia," Agricultural Systems, Elsevier, vol. 203(C).
    9. Michael Young & Ross Kingwell & John Young & Phil Vercoe, 2020. "An economic analysis of sheep flock structures for mixed enterprise Australian farm businesses," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), pages 677-699, July.
    10. Ulukan, Defne & Grillot, Myriam & Benoit, Marc & Bernes, Gun & Dumont, Bertrand & Magne, Marie-Angélina & Monteiro, Leonardo & Parsons, David & Veysset, Patrick & Ryschawy, Julie & Steinmetz, Lucille , 2022. "Positive deviant strategies implemented by organic multi-species livestock farms in Europe," Agricultural Systems, Elsevier, vol. 201(C).
    11. Finlayson, John & Real, Daniel & Nordblom, Tom & Revell, Clinton & Ewing, Mike & Kingwell, Ross, 2012. "Farm level assessments of a novel drought tolerant forage: Tedera (Bituminaria bituminosa C.H. Stirt var. albomarginata)," Agricultural Systems, Elsevier, vol. 112(C), pages 38-47.
    12. Latruffe, Laure & Mann, Stefan, 2015. "Labour constraints on choosing profitable products for part-time farmers in Swiss agriculture," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 4(2), pages 1-15, August.
    13. Brendan Lynch & Rick S. Llewellyn & Wendy J. Umberger & Marit E. Kragt, 2018. "Farmer interest in joint venture structures in the Australian broadacre grains sector," Agribusiness, John Wiley & Sons, Ltd., vol. 34(2), pages 472-491, March.
    14. Lawes, R.A. & Kingwell, R.S., 2012. "A longitudinal examination of business performance indicators for drought-affected farms," Agricultural Systems, Elsevier, vol. 106(1), pages 94-101.
    15. Thamo, Tas & Addai, Donkor & Pannell, David J. & Robertson, Michael J. & Thomas, Dean T. & Young, John M., 2017. "Climate change impacts and farm-level adaptation: Economic analysis of a mixed cropping–livestock system," Agricultural Systems, Elsevier, vol. 150(C), pages 99-108.
    16. Kingwell, Ross & Loxton, Ryan & Mardaneh, Elham, 2020. "Factors and scenarios affecting a farmer’s grain harvest logistics," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(2), April.
    17. Junquera, Victoria & Rubenstein, Daniel I. & Grêt-Regamey, Adrienne & Knaus, Florian, 2022. "Structural change in agriculture and farmers' social contacts: Insights from a Swiss mountain region," Agricultural Systems, Elsevier, vol. 200(C).
    18. Browne, Natalie & Kingwell, Ross & Behrendt, Ralph & Eckard, Richard, 2013. "The relative profitability of dairy, sheep, beef and grain farm enterprises in southeast Australia under selected rainfall and price scenarios," Agricultural Systems, Elsevier, vol. 117(C), pages 35-44.
    19. Kingwell, Ross & Islam, Nazrul & Xayavong, Vilaphonh, 2020. "Farming systems and their business strategies in south-western Australia: A decadal assessment of their profitability," Agricultural Systems, Elsevier, vol. 181(C).
    20. Young, Michael & Kingwell, Ross & Young, John & Vercoe, Phil, 2020. "An economic analysis of sheep flock structures for mixed enterprise Australian farm businesses," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:ajarec:v:65:y:2021:i:2:p:472-490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/aaresea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.