IDEAS home Printed from https://ideas.repec.org/a/bla/ajarec/v51y2007i4p425-443.html
   My bibliography  Save this article

Applying search theory to determine the feasibility of eradicating an invasive population in natural environments

Author

Listed:
  • Oscar J. Cacho
  • Susan Hester
  • Daniel Spring

Abstract

The detectability of invasive organisms influences the feasibility of eradicating an infestation. Search theory offers a framework for defining and measuring detectability, taking account of searcher ability, biological factors and the search environment. In this paper, search theory concepts are incorporated into a population model, and the costs of search and control are calculated as functions of the amount of search effort (the decision variable). Simulations are performed on a set of weed scenarios in a natural environment, involving different combinations of plant longevity, seed longevity and plant fecundity. Results provide preliminary estimates of the cost and duration of eradication programs to assist in prioritising weeds for control. The analysis shows that the success of an eradication program depends critically on the detectability of the target plant, the effectiveness of the control method, the labour requirements for search and control, and the germination rate of the plant. Copyright 2007 The Authors Journal compilation 2007 Australian Agricultural and Resource Economics Society Inc. .

Suggested Citation

  • Oscar J. Cacho & Susan Hester & Daniel Spring, 2007. "Applying search theory to determine the feasibility of eradicating an invasive population in natural environments," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 51(4), pages 425-443, December.
  • Handle: RePEc:bla:ajarec:v:51:y:2007:i:4:p:425-443
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1467-8489.2007.00389.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Odom, Doreen I. S. & Cacho, Oscar J. & Sinden, J. A. & Griffith, Garry R., 2003. "Policies for the management of weeds in natural ecosystems: the case of scotch broom (Cytisus scoparius, L.) in an Australian national park," Ecological Economics, Elsevier, vol. 44(1), pages 119-135, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. İ. Esra Büyüktahtakın & Robert G. Haight, 2018. "A review of operations research models in invasive species management: state of the art, challenges, and future directions," Annals of Operations Research, Springer, vol. 271(2), pages 357-403, December.
    2. Cacho, Oscar J. & Hester, Susan M., 2011. "Deriving efficient frontiers for effort allocation in the management of invasive species," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(1), pages 1-18.
    3. Morteza Chalak & David J. Pannell, 2015. "Optimal Integrated Strategies to Control an Invasive Weed," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 63(3), pages 381-407, September.
    4. Kompas, Tom & Chu, Long & Nguyen, Hoa Thi Minh, 2016. "A practical optimal surveillance policy for invasive weeds: An application to Hawkweed in Australia," Ecological Economics, Elsevier, vol. 130(C), pages 156-165.
    5. Cacho, Oscar J. & Hester, Susan M., 2022. "Modelling biocontrol of invasive insects: An application to European Wasp (Vespula germanica) in Australia," Ecological Modelling, Elsevier, vol. 467(C).
    6. Lavallée, François & Smadi, Charline & Alvarez, Isabelle & Reineking, Björn & Martin, François-Marie & Dommanget, Fanny & Martin, Sophie, 2019. "A stochastic individual-based model for the growth of a stand of Japanese knotweed including mowing as a management technique," Ecological Modelling, Elsevier, vol. 413(C).
    7. Chalak, Morteza & Pannell, David J., 2012. "Optimal control of a stochastic biological invasion," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124373, Agricultural and Applied Economics Association.
    8. Florec, Veronique & Sadler, Rohan J. & White, Ben & Dominiak, Bernie C., 2013. "Choosing the battles: The economics of area wide pest management for Queensland fruit fly," Food Policy, Elsevier, vol. 38(C), pages 203-213.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cacho, Oscar J. & Wise, Russell M. & Hester, Susan M. & Sinden, J.A., 2008. "Bioeconomic modeling for control of weeds in natural environments," Ecological Economics, Elsevier, vol. 65(3), pages 559-568, April.
    2. Tumaneng-Diete, Tessie & Page, Ashley & Binney, Jim, 2005. "Assessing the economic values of exotic invasive plants on areas of conservation significance in Queensland," 2005 Conference (49th), February 9-11, 2005, Coff's Harbour, Australia 139287, Australian Agricultural and Resource Economics Society.
    3. Morteza Chalak & Maksym Polyakov & David J. Pannell, 2017. "Economics of Controlling Invasive Species: A Stochastic Optimization Model for a Spatial-dynamic Process," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(1), pages 123-139.
    4. Born, Wanda & Rauschmayer, Felix & Bräuer, Ingo, 2004. "Economic evaluation of biological invasions: A survey," UFZ Discussion Papers 7/2004, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    5. Olson, Lars J., 2006. "The Economics of Terrestrial Invasive Species: A Review of the Literature," Agricultural and Resource Economics Review, Cambridge University Press, vol. 35(1), pages 178-194, April.
    6. Chalak-Haghighi, Morteza & Ruijs, Arjan & van Ierland, Ekko C., 2009. "Biological control of invasive plant species: stochastic economic analysis," 2009 Conference (53rd), February 11-13, 2009, Cairns, Australia 48153, Australian Agricultural and Resource Economics Society.
    7. Chalak-Haghighi, Morteza & Pannell, David J., 2010. "Economics of controlling a spreading environmental weed," 2010 Conference (54th), February 10-12, 2010, Adelaide, Australia 58886, Australian Agricultural and Resource Economics Society.
    8. Trommetter, Michel, 2005. "Biodiversity and international stakes: A question of access," Ecological Economics, Elsevier, vol. 53(4), pages 573-583, June.
    9. Zull, Andrew F. & Cacho, Oscar J. & Lawes, Roger A., 2009. "Optimising woody-weed control," 2009 Conference (53rd), February 11-13, 2009, Cairns, Australia 47620, Australian Agricultural and Resource Economics Society.
    10. Odem, Doreen & Sinden, Jack A. & Cacho, Oscar J. & Griffith, Garry R., 2003. "Economic Issues in the Management of Plants Invading Natural Environments: Scotch Broom in Barrington Tops National Park," 2003 Conference (47th), February 12-14, 2003, Fremantle, Australia 58193, Australian Agricultural and Resource Economics Society.
    11. Woongchan Jeon & Kwansoo Kim, 2017. "Optimal Weed Control Strategies in Rice Production under Dynamic and Static Decision Rules in South Korea," Sustainability, MDPI, vol. 9(6), pages 1-11, June.
    12. Chalak, Morteza & Pannell, David J., 2012. "Optimising control of an agricultural weed in sheep-production pastures," Agricultural Systems, Elsevier, vol. 109(C), pages 1-8.
    13. Chalak, Morteza & Pannell, David J., 2012. "Optimal control of a stochastic biological invasion," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124373, Agricultural and Applied Economics Association.
    14. Born, Wanda & Rauschmayer, Felix & Brauer, Ingo, 2005. "Economic evaluation of biological invasions--a survey," Ecological Economics, Elsevier, vol. 55(3), pages 321-336, November.
    15. Martínez, Yolanda & Cirujeda, Alicia & Gómez, Miguel I. & Marí, Ana I. & Pardo, Gabriel, 2018. "Bioeconomic model for optimal control of the invasive weed Zea mays subspp. (teosinte) in Spain," Agricultural Systems, Elsevier, vol. 165(C), pages 116-127.
    16. Chalak, Morteza, 2014. "Optimal Control for a Dispersing Biological Agent," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 39(2), pages 1-19.
    17. Carrasco, Luis Roman & MacLeod, Alan & Knight, John D. & Baker, Richard & Mumford, John D., 2009. "Optimal Control of Spreading Biological Invasions: For How Long Should We Apply the Brake?," 83rd Annual Conference, March 30 - April 1, 2009, Dublin, Ireland 50940, Agricultural Economics Society.
    18. Cacho, Oscar J. & Wise, Russell M. & Hester, Susan M. & Sinden, Jack A., 2004. "Weed Invasions: To Control or Not to Control?," Working Papers 12908, University of New England, School of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:ajarec:v:51:y:2007:i:4:p:425-443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/aaresea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.