IDEAS home Printed from https://ideas.repec.org/a/bkr/journl/v83y2024i2p54-76.html
   My bibliography  Save this article

Analysts' Inflation Expectations vs Univariate Models of Inflation Forecasting in the Russian Economy

Author

Listed:
  • Yury Perevyshin

    (RANEPA)

Abstract

This paper analyses the accuracy of analysts' inflation expectations from the consensus forecast of the Centre of Development Institute of the Higher School of Economics, which is used as a direct forecast of inflation. The consensus forecast is inferior in accuracy to univariate econometric forecasting models on horizons of six to eight quarters and is no more accurate than the model forecasts on shorter horizons. The medium-term expectations of professional forecasters for the Russian economy have been anchored to the Bank of Russia's target of 4% since 2017. The use of analysts' inflation expectations does not lead to a significant improvement in the accuracy of the inflation forecast in the Phillips curve framework in the Russian economy over the past five years. Iterative forecasting of inflation via the Phillips curve turns out to be more accurate than direct forecasts, first-order vector autoregression model, or random walk model.

Suggested Citation

  • Yury Perevyshin, 2024. "Analysts' Inflation Expectations vs Univariate Models of Inflation Forecasting in the Russian Economy," Russian Journal of Money and Finance, Bank of Russia, vol. 83(2), pages 54-76, June.
  • Handle: RePEc:bkr:journl:v:83:y:2024:i:2:p:54-76
    as

    Download full text from publisher

    File URL: https://rjmf.econs.online/upload/iblock/5ca/ot65shimnzi5on623op8t41pq06zcjp6/Analysts-Inflation-Expectations-vs-Univariate-Models-of-Inflation-Forecasting.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ang, Andrew & Bekaert, Geert & Wei, Min, 2007. "Do macro variables, asset markets, or surveys forecast inflation better?," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
    2. Hubrich, Kirstin, 2005. "Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy?," International Journal of Forecasting, Elsevier, vol. 21(1), pages 119-136.
    3. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    4. Baumann, Ursel & Darracq Pariès, Matthieu & Westermann, Thomas & Riggi, Marianna & Bobeica, Elena & Meyler, Aidan & Böninghausen, Benjamin & Fritzer, Friedrich & Trezzi, Riccardo & Jonckheere, Jana & , 2021. "Inflation expectations and their role in Eurosystem forecasting," Occasional Paper Series 264, European Central Bank.
    5. Bharat Trehan, 2015. "Survey Measures of Expected Inflation and the Inflation Process," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 47(1), pages 207-222, February.
    6. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    7. Konstantin Styrin, 2019. "Forecasting Inflation in Russia Using Dynamic Model Averaging," Russian Journal of Money and Finance, Bank of Russia, vol. 78(1), pages 3-18, March.
    8. Garratt, Anthony & Mitchell, James & Vahey, Shaun P., 2014. "Measuring output gap nowcast uncertainty," International Journal of Forecasting, Elsevier, vol. 30(2), pages 268-279.
    9. Michael D. Bauer & Erin McCarthy, 2015. "Can we rely on market-based inflation forecasts?," FRBSF Economic Letter, Federal Reserve Bank of San Francisco.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
    2. Andrew B. Martinez, 2020. "Extracting Information from Different Expectations," Working Papers 2020-008, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    3. Filip Novotný & Marie Raková, 2011. "Assessment of Consensus Forecasts Accuracy: The Czech National Bank Perspective," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 61(4), pages 348-366, August.
    4. Michael Dotsey & Shigeru Fujita & Tom Stark, 2018. "Do Phillips Curves Conditionally Help to Forecast Inflation?," International Journal of Central Banking, International Journal of Central Banking, vol. 14(4), pages 43-92, September.
    5. Matei Demetrescu & Christoph Hanck & Robinson Kruse‐Becher, 2022. "Robust inference under time‐varying volatility: A real‐time evaluation of professional forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 1010-1030, August.
    6. Granziera, Eleonora & Hubrich, Kirstin & Moon, Hyungsik Roger, 2014. "A predictability test for a small number of nested models," Journal of Econometrics, Elsevier, vol. 182(1), pages 174-185.
    7. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    8. Luetkepohl Helmut & Xu Fang, 2011. "Forecasting Annual Inflation with Seasonal Monthly Data: Using Levels versus Logs of the Underlying Price Index," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-23, February.
    9. Aparicio, Diego & Bertolotto, Manuel I., 2020. "Forecasting inflation with online prices," International Journal of Forecasting, Elsevier, vol. 36(2), pages 232-247.
    10. Hossein Hassani & Abdol S. Soofi & Anatoly Zhigljavsky, 2013. "Predicting inflation dynamics with singular spectrum analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 176(3), pages 743-760, June.
    11. Baumann, Ursel & Darracq Pariès, Matthieu & Westermann, Thomas & Riggi, Marianna & Bobeica, Elena & Meyler, Aidan & Böninghausen, Benjamin & Fritzer, Friedrich & Trezzi, Riccardo & Jonckheere, Jana & , 2021. "Inflation expectations and their role in Eurosystem forecasting," Occasional Paper Series 264, European Central Bank.
    12. Mihaela SIMIONESCU, 2014. "Improving The Inflation Rate Forecasts Of Romanian Experts Using A Fixed-Effects Models Approach," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 13, pages 87-102, June.
    13. Araujo, Gustavo Silva & Gaglianone, Wagner Piazza, 2023. "Machine learning methods for inflation forecasting in Brazil: New contenders versus classical models," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(2).
    14. Viacheslav Kramkov, 2023. "Does CPI disaggregation improve inflation forecast accuracy?," Bank of Russia Working Paper Series wps112, Bank of Russia.
    15. Jan Prüser, 2021. "Forecasting US inflation using Markov dimension switching," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 481-499, April.
    16. repec:zbw:bofitp:2015_012 is not listed on IDEAS
    17. O. De Bandt & E. Michaux & C. Bruneau & A. Flageollet, 2007. "Forecasting inflation using economic indicators: the case of France," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(1), pages 1-22.
    18. Moser, Gabriel & Rumler, Fabio & Scharler, Johann, 2007. "Forecasting Austrian inflation," Economic Modelling, Elsevier, vol. 24(3), pages 470-480, May.
    19. Niu, Linlin & Xu, Xiu & Chen, Ying, 2017. "An adaptive approach to forecasting three key macroeconomic variables for transitional China," Economic Modelling, Elsevier, vol. 66(C), pages 201-213.
    20. Hendry, David F. & Hubrich, Kirstin, 2006. "Forecasting economic aggregates by disaggregates," Working Paper Series 589, European Central Bank.
    21. James Mitchell & Saeed Zaman, 2023. "The Distributional Predictive Content of Measures of Inflation Expectations," Working Papers 23-31, Federal Reserve Bank of Cleveland.

    More about this item

    Keywords

    inflation expectations; inflation; monetary policy; Phillips curve; inflation forecasting; univariate time series models; forecast accuracy;
    All these keywords.

    JEL classification:

    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bkr:journl:v:83:y:2024:i:2:p:54-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Olga Kuvshinova (email available below). General contact details of provider: https://edirc.repec.org/data/cbrgvru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.