IDEAS home Printed from https://ideas.repec.org/a/bjc/journl/v8y2021i4p177-182.html
   My bibliography  Save this article

Modelling Theft Criminal Offence in Kwara State Using ARIMA

Author

Listed:
  • AKINYEMI, Emmanuel K

    (Dept. of Statistics, Federal School of Statistics, Nigeria)

  • OGUNLEYE, Abiodun O

    (Dept. of Statistics, Federal School of Statistics, Nigeria)

  • GUNSOLA, Obaseye A

    (Dept. of Statistics, Federal School of Statistics, Nigeria)

  • Olaoye, Hakeem O

    (Dept. of Statistics, Federal School of Statistics, Nigeria)

Abstract

A time series modeling approach (Box-Jenkins’ ARIMA model) has been used in this study to forecast theft criminal offence in Kwara state. This study is centered on Time Series Analysis of Data on theft criminal Offences in Kwara State from 2006– 2015 which is restricted to only theft criminal offences in the state. The best model is the model with the least AIC Value which is SARIMA (0,1,1)(2,0,0)[12] having its AIC Value to be 898.98. The ACF of Residual showed that nearly all the spikes are within the line of boundary and the Ljung-Box statistics showed that all p-value points are above 0.05 thereby showing the accuracy of the model is good to forecast. The histogram showed that residual for the forecast which reveal that the error term for the forecast satisfies the assumption of normality, i.e. residual of the forecast is normally distributed. It was concluded that there is no residual autocorrelation i.e. there is evidence of non-zero autocorrelations in the forecast errors at lags 1 to 21. It recommend that Government is therefore advised to aside Security operatives engage Landlords, Household heads, market women, communities/street leaders and elders as an extended mediums of getting security information.

Suggested Citation

  • AKINYEMI, Emmanuel K & OGUNLEYE, Abiodun O & GUNSOLA, Obaseye A & Olaoye, Hakeem O, 2021. "Modelling Theft Criminal Offence in Kwara State Using ARIMA," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 8(4), pages 177-182, April.
  • Handle: RePEc:bjc:journl:v:8:y:2021:i:4:p:177-182
    as

    Download full text from publisher

    File URL: https://www.rsisinternational.org/journals/ijrsi/digital-library/volume-8-issue-4/177-182.pdf
    Download Restriction: no

    File URL: https://www.rsisinternational.org/virtual-library/papers/modelling-theft-criminal-offence-in-kwara-state-using-arima/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harvey, Andrew C & Fernandes, C, 1989. "Time Series Models for Count or Qualitative Observations," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(4), pages 407-417, October.
    2. Harvey, Andrew C & Fernandes, C, 1989. "Time Series Models for Count or Qualitative Observations: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(4), pages 422-422, October.
    3. Commandeur, Jacques J.F. & Koopman, Siem Jan, 2007. "An Introduction to State Space Time Series Analysis," OUP Catalogue, Oxford University Press, number 9780199228874.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vujić, Sunčica & Commandeur, Jacques J.F. & Koopman, Siem Jan, 2016. "Intervention time series analysis of crime rates: The case of sentence reform in Virginia," Economic Modelling, Elsevier, vol. 57(C), pages 311-323.
    2. Suncica Vujic & Jacques Commandeur & Siem Jan Koopman, 2012. "Structural Intervention Time Series Analysis of Crime Rates: The Impact of Sentence Reform in Virginia," Tinbergen Institute Discussion Papers 12-007/4, Tinbergen Institute.
    3. Vujić Sunčica & Koopman Siem Jan & Commandeur J.F., 2012. "Economic Trends and Cycles in Crime: A Study for England and Wales," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 232(6), pages 652-677, December.
    4. Fokianos, Konstantinos, 2024. "Multivariate Count Time Series Modelling," Econometrics and Statistics, Elsevier, vol. 31(C), pages 100-116.
    5. Harvey, A., 2008. "Dynamic distributions and changing copulas," Cambridge Working Papers in Economics 0839, Faculty of Economics, University of Cambridge.
    6. Boris Aleksandrov & Christian H. Weiß, 2020. "Testing the dispersion structure of count time series using Pearson residuals," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(3), pages 325-361, September.
    7. Yang Lu, 2020. "A simple parameter‐driven binary time series model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 187-199, March.
    8. Jean Peyhardi, 2024. "Integer-valued autoregressive models based on quasi Pólya thinning operator," Statistical Inference for Stochastic Processes, Springer, vol. 27(3), pages 813-838, October.
    9. Nobuhiko Terui & Masataka Ban & Toshihiko Maki, 2010. "Finding market structure by sales count dynamics—Multivariate structural time series models with hierarchical structure for count data—," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 91-107, February.
    10. Marcelo Bourguignon & Christian H. Weiß, 2017. "An INAR(1) process for modeling count time series with equidispersion, underdispersion and overdispersion," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 847-868, December.
    11. Weiß Christian & Scherer Lukas & Aleksandrov Boris & Feld Martin, 2020. "Checking Model Adequacy for Count Time Series by Using Pearson Residuals," Journal of Time Series Econometrics, De Gruyter, vol. 12(1), pages 1-15, January.
    12. Axel Groß‐KlußMann & Nikolaus Hautsch, 2013. "Predicting Bid–Ask Spreads Using Long‐Memory Autoregressive Conditional Poisson Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(8), pages 724-742, December.
    13. Ruben Loaiza-Maya & Michael Stanley Smith, 2017. "Variational Bayes Estimation of Discrete-Margined Copula Models with Application to Time Series," Papers 1712.09150, arXiv.org, revised Jul 2018.
    14. Fokianos, Konstantinos & Fried, Roland & Kharin, Yuriy & Voloshko, Valeriy, 2022. "Statistical analysis of multivariate discrete-valued time series," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    15. Jung, Robert C. & Kukuk, Martin & Liesenfeld, Roman, 2006. "Time series of count data: modeling, estimation and diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2350-2364, December.
    16. Wagner Barreto-Souza, 2019. "Mixed Poisson INAR(1) processes," Statistical Papers, Springer, vol. 60(6), pages 2119-2139, December.
    17. Brannas, Kurt, 1995. "Prediction and control for a time-series count data model," International Journal of Forecasting, Elsevier, vol. 11(2), pages 263-270, June.
    18. Snyder, Ralph D. & Ord, J. Keith & Beaumont, Adrian, 2012. "Forecasting the intermittent demand for slow-moving inventories: A modelling approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 485-496.
    19. Dani Gamerman & Thiago Rezende Santos & Glaura C. Franco, 2013. "A Non-Gaussian Family Of State-Space Models With Exact Marginal Likelihood," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(6), pages 625-645, November.
    20. Richard A. Davis & Thomas C. M. Lee & Gabriel A. Rodriguez‐Yam, 2008. "Break Detection for a Class of Nonlinear Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 834-867, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bjc:journl:v:8:y:2021:i:4:p:177-182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Renu Malsaria (email available below). General contact details of provider: https://rsisinternational.org/journals/ijrsi/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.