IDEAS home Printed from https://ideas.repec.org/a/bjc/journl/v11y2024i4p183-201.html
   My bibliography  Save this article

Software Engineering’s Key Role in AI Content Trustworthiness

Author

Listed:
  • Wumi AJAYI

    (Software Engineering Department, Babcock University, Ilisan Remo, Ogun State Nigeria.)

  • Adekoya Damola Felix

    (Computer Science Department, Lead City University, Ibadan. Oyo State Nigeria.)

  • Ojarikre Oghenenerowho Princewill

    (Computer Science Department, Lead City University, Ibadan. Oyo State Nigeria.)

  • Fajuyigbe Gbenga Joseph

    (Computer Science Department, Lead City University, Ibadan. Oyo State Nigeria.)

Abstract

Artificial intelligence (AI) is the simulation of human intelligence processes by machines, especially computer systems. It can also be defined as the science and engineering of making intelligent machines, especially intelligent computer programs. In recent decades, there has been a discernible surge in the focus of the scientific and government sectors on reliable AI. The International Organization for Standardization, which focuses on technical, industrial, and commercial standardization, has devised several strategies to promote trust in AI systems, with an emphasis on fairness, transparency, accountability, and controllability. Therefore, this paper aims to examine the role of Software Engineering in AI Content trustworthiness.

Suggested Citation

  • Wumi AJAYI & Adekoya Damola Felix & Ojarikre Oghenenerowho Princewill & Fajuyigbe Gbenga Joseph, 2024. "Software Engineering’s Key Role in AI Content Trustworthiness," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(4), pages 183-201, April.
  • Handle: RePEc:bjc:journl:v:11:y:2024:i:4:p:183-201
    as

    Download full text from publisher

    File URL: https://www.rsisinternational.org/journals/ijrsi/digital-library/volume-11-issue-4/183-201.pdf
    Download Restriction: no

    File URL: https://rsisinternational.org/journals/ijrsi/articles/software-engineerings-key-role-in-ai-content-trustworthiness/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nenad Tomašev & Julien Cornebise & Frank Hutter & Shakir Mohamed & Angela Picciariello & Bec Connelly & Danielle C. M. Belgrave & Daphne Ezer & Fanny Cachat van der Haert & Frank Mugisha & Gerald Abil, 2020. "AI for social good: unlocking the opportunity for positive impact," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    2. Wenjuan Fan & Jingnan Liu & Shuwan Zhu & Panos M. Pardalos, 2020. "Investigating the impacting factors for the healthcare professionals to adopt artificial intelligence-based medical diagnosis support system (AIMDSS)," Annals of Operations Research, Springer, vol. 294(1), pages 567-592, November.
    3. Jon Kleinberg & Himabindu Lakkaraju & Jure Leskovec & Jens Ludwig & Sendhil Mullainathan, 2018. "Human Decisions and Machine Predictions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(1), pages 237-293.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
    2. Richard Berk, 2019. "Accuracy and Fairness for Juvenile Justice Risk Assessments," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 16(1), pages 175-194, March.
    3. Peter Leopold S. Bergman & Elizabeth Kopko & Julio Rodriguez, 2021. "Using Predictive Analytics to Track Students: Evidence from a Seven-College Experiment," CESifo Working Paper Series 9157, CESifo.
    4. Bauer, Kevin & Gill, Andrej, 2021. "Mirror, mirror on the wall: Machine predictions and self-fulfilling prophecies," SAFE Working Paper Series 313, Leibniz Institute for Financial Research SAFE.
    5. McKenzie, David & Sansone, Dario, 2019. "Predicting entrepreneurial success is hard: Evidence from a business plan competition in Nigeria," Journal of Development Economics, Elsevier, vol. 141(C).
    6. Ciurea Iulia-Cristina, 2024. "The Impact of the EU AI Act on the UN Sustainable Development Goals for 2030 – A Text Analysis," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 2857-2870.
    7. Liyang Tang, 2020. "Application of Nonlinear Autoregressive with Exogenous Input (NARX) neural network in macroeconomic forecasting, national goal setting and global competitiveness assessment," Papers 2005.08735, arXiv.org.
    8. Valerio Capraro & Roberto Di Paolo & Veronica Pizziol, 2023. "Assessing Large Language Models' ability to predict how humans balance self-interest and the interest of others," Papers 2307.12776, arXiv.org, revised Feb 2024.
    9. Elliott Ash & Claudia Marangon, 2024. "Judging disparities: Recidivism risk, image motives and in-group bias on Wisconsin criminal courts," Discussion Papers 2024-03, Nottingham Interdisciplinary Centre for Economic and Political Research (NICEP).
    10. Yoan Hermstrüwer & Pascal Langenbach, 2022. "Fair Governance with Humans and Machines," Discussion Paper Series of the Max Planck Institute for Research on Collective Goods 2022_04, Max Planck Institute for Research on Collective Goods, revised 01 Mar 2023.
    11. Aliprantis, Dionissi & Martin, Hal & Tauber, Kristen, 2024. "What determines the success of housing mobility programs?," Journal of Housing Economics, Elsevier, vol. 65(C).
    12. Wilson, Christopher & van der Velden, Maja, 2022. "Sustainable AI: An integrated model to guide public sector decision-making," Technology in Society, Elsevier, vol. 68(C).
    13. Daniela Sele & Marina Chugunova, 2023. "Putting a Human in the Loop: Increasing Uptake, but Decreasing Accuracy of Automated Decision-Making," Rationality and Competition Discussion Paper Series 438, CRC TRR 190 Rationality and Competition.
    14. Daníelsson, Jón & Macrae, Robert & Uthemann, Andreas, 2022. "Artificial intelligence and systemic risk," Journal of Banking & Finance, Elsevier, vol. 140(C).
    15. Yucheng Yang & Zhong Zheng & Weinan E, 2020. "Interpretable Neural Networks for Panel Data Analysis in Economics," Papers 2010.05311, arXiv.org, revised Nov 2020.
    16. Daniel Carter & Amelia Acker & Dan Sholler, 2021. "Investigative approaches to researching information technology companies," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(6), pages 655-666, June.
    17. Klockmann, Victor & von Schenk, Alicia & Villeval, Marie Claire, 2022. "Artificial intelligence, ethics, and intergenerational responsibility," Journal of Economic Behavior & Organization, Elsevier, vol. 203(C), pages 284-317.
    18. Robert John Zagar & James Garbarino & Brad Randmark & Ishup Singh & Joseph Kovach & Emma Cenzon & Michael Benko & Steve Tippins & Kenneth G. Busch, 2022. "Study 1: 630 Domestic-Terrorist, Mass-Murdering, Spree-Shooters Differ from 623 Controls and Study 2: 15 Domestic-Terrorist, Mass-Murdering, Spree-Shooters Differ From 23 Homicidal and 36 Controls on ," Review of European Studies, Canadian Center of Science and Education, vol. 14(1), pages 1-54, March.
    19. Zhao, Shuping & Xu, Kai & Wang, Zhao & Liang, Changyong & Lu, Wenxing & Chen, Bo, 2022. "Financial distress prediction by combining sentiment tone features," Economic Modelling, Elsevier, vol. 106(C).
    20. Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023. "Towards data-driven project design: Providing optimal treatment rules for development projects," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bjc:journl:v:11:y:2024:i:4:p:183-201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Renu Malsaria (email available below). General contact details of provider: https://rsisinternational.org/journals/ijrsi/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.