IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v97y2002mjunep482-493.html
   My bibliography  Save this article

Marginal Longitudinal Nonparametric Regression: Locality and Efficiency of Spline and Kernel Methods

Author

Listed:
  • Welsh A.H.
  • Lin X.
  • Carroll R.J.

Abstract

No abstract is available for this item.

Suggested Citation

  • Welsh A.H. & Lin X. & Carroll R.J., 2002. "Marginal Longitudinal Nonparametric Regression: Locality and Efficiency of Spline and Kernel Methods," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 482-493, June.
  • Handle: RePEc:bes:jnlasa:v:97:y:2002:m:june:p:482-493
    as

    Download full text from publisher

    File URL: http://www.ingentaconnect.com/content/asa/jasa/2002/00000097/00000458/art00010
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Yan & Zhang, Xinyu & Wang, Shouyang & Zou, Guohua, 2016. "Model averaging based on leave-subject-out cross-validation," Journal of Econometrics, Elsevier, vol. 192(1), pages 139-151.
    2. Sun, Liuquan & Tong, Xingwei, 2009. "Analyzing longitudinal data with informative observation times under biased sampling," Statistics & Probability Letters, Elsevier, vol. 79(9), pages 1162-1168, May.
    3. Moiseev, Nikita & Volodin, Andrei, 2019. "Increasing the accuracy of macroeconomic time series forecast by incorporating functional and correlational dependencies between them," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 53, pages 119-137.
    4. Deng, Shirong & Liu, Kin-yat & Zhao, Xingqiu, 2017. "Semiparametric regression analysis of multivariate longitudinal data with informative observation times," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 120-130.
    5. Zhao, Xingqiu & Tong, Xingwei & Sun, Jianguo, 2013. "Robust estimation for panel count data with informative observation times," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 33-40.
    6. Chen, Huaihou & Paik, Myunghee Cho & Dhamoon, Mandip S. & Moon, Yeseon Park & Willey, Joshua & Sacco, Ralph L. & Elkind, Mitchell S.V., 2012. "Semiparametric model for the dichotomized functional outcome after stroke: The Northern Manhattan Study," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2598-2608.
    7. Jinhong You & Alan Wan & Shu Liu & Yong Zhou, 2015. "A varying-coefficient approach to estimating multi-level clustered data models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 417-440, June.
    8. Gholamreza Hajargasht, 2009. "Nonparametric Panel Data Models, A Penalized Spline Approach," CEPA Working Papers Series WP052009, School of Economics, University of Queensland, Australia.
    9. Al Kadiri, M. & Carroll, R.J. & Wand, M.P., 2010. "Marginal longitudinal semiparametric regression via penalized splines," Statistics & Probability Letters, Elsevier, vol. 80(15-16), pages 1242-1252, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:97:y:2002:m:june:p:482-493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.