IDEAS home Printed from https://ideas.repec.org/a/ris/apltrx/0364.html
   My bibliography  Save this article

Increasing the accuracy of macroeconomic time series forecast by incorporating functional and correlational dependencies between them

Author

Listed:
  • Moiseev, Nikita

    (Plekhanov Russian University of Economics, Moscow, Russia)

  • Volodin, Andrei

    (University of Regina, Regina, Canada)

Abstract

The paper presents a parametric approach to forecasting vectors of macroeconomic indicators, which takes into account functional and correlation dependencies between them. It is asserted that this information allows to achieve a steady decrease in their mean-squared forecast error. The paper also provides an algorithm for calculating the general form of the corrected probability density function for each of modelled indicators. In order to prove the efficiency of the proposed method we conduct a rigorous simulation and empirical investigation.

Suggested Citation

  • Moiseev, Nikita & Volodin, Andrei, 2019. "Increasing the accuracy of macroeconomic time series forecast by incorporating functional and correlational dependencies between them," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 53, pages 119-137.
  • Handle: RePEc:ris:apltrx:0364
    as

    Download full text from publisher

    File URL: http://pe.cemi.rssi.ru/pe_2019_53_119-137.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antoniadis, Anestis & Sapatinas, Theofanis, 2007. "Estimation and inference in functional mixed-effects models," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4793-4813, June.
    2. Huaihou Chen & Yuanjia Wang, 2011. "A Penalized Spline Approach to Functional Mixed Effects Model Analysis," Biometrics, The International Biometric Society, vol. 67(3), pages 861-870, September.
    3. Fernandez, Carmen & Ley, Eduardo & Steel, Mark F. J., 2001. "Benchmark priors for Bayesian model averaging," Journal of Econometrics, Elsevier, vol. 100(2), pages 381-427, February.
    4. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    5. Xavier Sala-I-Martin & Gernot Doppelhofer & Ronald I. Miller, 2004. "Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach," American Economic Review, American Economic Association, vol. 94(4), pages 813-835, September.
    6. Claeskens G. & Hjort N.L., 2003. "The Focused Information Criterion," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 900-916, January.
    7. Wensheng Guo, 2002. "Functional Mixed Effects Models," Biometrics, The International Biometric Society, vol. 58(1), pages 121-128, March.
    8. Ing, Ching-Kang, 2003. "Multistep Prediction In Autoregressive Processes," Econometric Theory, Cambridge University Press, vol. 19(2), pages 254-279, April.
    9. Ing, Ching-Kang & Wei, Ching-Zong, 2003. "On same-realization prediction in an infinite-order autoregressive process," Journal of Multivariate Analysis, Elsevier, vol. 85(1), pages 130-155, April.
    10. Hansen, Bruce E., 2008. "Least-squares forecast averaging," Journal of Econometrics, Elsevier, vol. 146(2), pages 342-350, October.
    11. Bruce E. Hansen, 2014. "Model averaging, asymptotic risk, and regressor groups," Quantitative Economics, Econometric Society, vol. 5(3), pages 495-530, November.
    12. Welsh A.H. & Lin X. & Carroll R.J., 2002. "Marginal Longitudinal Nonparametric Regression: Locality and Efficiency of Spline and Kernel Methods," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 482-493, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hansen, Bruce E., 2008. "Least-squares forecast averaging," Journal of Econometrics, Elsevier, vol. 146(2), pages 342-350, October.
    2. Moral-Benito, Enrique, 2010. "Model averaging in economics," MPRA Paper 26047, University Library of Munich, Germany.
    3. Hansen, Bruce E., 2010. "Averaging estimators for autoregressions with a near unit root," Journal of Econometrics, Elsevier, vol. 158(1), pages 142-155, September.
    4. Cheng, Xu & Hansen, Bruce E., 2015. "Forecasting with factor-augmented regression: A frequentist model averaging approach," Journal of Econometrics, Elsevier, vol. 186(2), pages 280-293.
    5. Xu Cheng & Bruce E. Hansen, 2012. "Forecasting with Factor-Augmented Regression: A Frequentist Model Averaging Approach, Second Version," PIER Working Paper Archive 13-061, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 03 Sep 2013.
    6. Liao, Jun & Zou, Guohua, 2020. "Corrected Mallows criterion for model averaging," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    7. Rockey, James & Temple, Jonathan, 2016. "Growth econometrics for agnostics and true believers," European Economic Review, Elsevier, vol. 81(C), pages 86-102.
    8. Enrique Moral-Benito, 2015. "Model Averaging In Economics: An Overview," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 46-75, February.
    9. Kajal Lahiri & Huaming Peng & Xuguang Simon Sheng, 2022. "Measuring Uncertainty of a Combined Forecast and Some Tests for Forecaster Heterogeneity," Advances in Econometrics, in: Essays in Honor of M. Hashem Pesaran: Prediction and Macro Modeling, volume 43, pages 29-50, Emerald Group Publishing Limited.
    10. Liao, Jun & Zou, Guohua & Gao, Yan & Zhang, Xinyu, 2021. "Model averaging prediction for time series models with a diverging number of parameters," Journal of Econometrics, Elsevier, vol. 223(1), pages 190-221.
    11. Chen, Yi-Ting & Liu, Chu-An, 2023. "Model averaging for asymptotically optimal combined forecasts," Journal of Econometrics, Elsevier, vol. 235(2), pages 592-607.
    12. Charemza, Wojciech W. & Strachan, Rodney & Zurawski, Piotr, 2010. "False posteriors for the long-term growth determinants," Economics Letters, Elsevier, vol. 109(3), pages 144-146, December.
    13. Zhang, Xinyu & Liu, Chu-An, 2023. "Model averaging prediction by K-fold cross-validation," Journal of Econometrics, Elsevier, vol. 235(1), pages 280-301.
    14. Greenaway-McGrevy, Ryan, 2022. "Forecast combination for VARs in large N and T panels," International Journal of Forecasting, Elsevier, vol. 38(1), pages 142-164.
    15. Riccardo (Jack) Lucchetti & Luca Pedini, 2020. "ParMA: Parallelised Bayesian Model Averaging for Generalised Linear Models," Working Papers 2020:28, Department of Economics, University of Venice "Ca' Foscari".
    16. Jakub Nowotarski, 2013. "Short-term forecasting of electricity spot prices using model averaging (Krótkoterminowe prognozowanie spotowych cen energii elektrycznej z wykorzystaniem uśredniania modeli)," HSC Research Reports HSC/13/17, Hugo Steinhaus Center, Wroclaw University of Technology.
    17. Durlauf, Steven N. & Navarro, Salvador & Rivers, David A., 2016. "Model uncertainty and the effect of shall-issue right-to-carry laws on crime," European Economic Review, Elsevier, vol. 81(C), pages 32-67.
    18. Ley, Eduardo & Steel, Mark F. J., 2007. "On the effect of prior assumptions in Bayesian model averaging with applications to growth regression," Policy Research Working Paper Series 4238, The World Bank.
    19. Aart Kraay & Norikazu Tawara, 2013. "Can specific policy indicators identify reform priorities?," Journal of Economic Growth, Springer, vol. 18(3), pages 253-283, September.
    20. Klump, R. & Prüfer, P., 2006. "Prioritizing Policies for Pro-Poor Growth : Applying Bayesian Model Averaging to Vietnam," Other publications TiSEM dc14add6-f581-4eea-92dd-3, Tilburg University, School of Economics and Management.

    More about this item

    Keywords

    Regression analysis; GDP; Inflation; Monetary base; Unemployment; Maximum likelihood method; Probability density function; Functional and correlation dependencies of macroeconomic indicators; Projection accuracy; Mean square error; Bayesian econometrics;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:apltrx:0364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anatoly Peresetsky (email available below). General contact details of provider: http://appliedeconometrics.cemi.rssi.ru/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.