IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v47y2010i3p303-314.html
   My bibliography  Save this article

Long-tail longitudinal modeling of insurance company expenses

Author

Listed:
  • Shi, Peng
  • Frees, Edward W.

Abstract

The insurance industry is known to have high operating expenses in the financial services sector. Insurers, investors and regulators are interested in models to understand the behavior of expenses. However, the current practice ignores skewness, occasional negative values as well as their temporal dependence. Addressing these three features, this paper develops a longitudinal model of insurance company expenses that can be used for prediction, to identify unusual behavior, and to measure firm efficiency. Specifically, we use a three-parameter asymmetric Laplace density for the marginal distribution of insurers' expenses in each year. Copula functions are employed to accommodate their temporal dependence. As a function of explanatory variables, the location parameter allows us to analyze an insurer's expenses in light of the firm's characteristics. Our model can be interpreted as a longitudinal quantile regression. The analysis is performed using property-casualty insurance company data from the National Association of Insurance Commissioners of years 2001-2006. Due to the long-tailed nature of insurers' expenses, two alternative approaches are proposed to improve the performance of the longitudinal quantile regression model: rescaling and transformation. Predictive densities are derived that allow one to compare the predictions for individual insurers in a hold-out-sample. Both predictive models are shown to be reasonable with the rescaling method outperforming the transformation method. Compared with standard longitudinal models, our model is shown to be superior in identifying insurers' unusual behavior.

Suggested Citation

  • Shi, Peng & Frees, Edward W., 2010. "Long-tail longitudinal modeling of insurance company expenses," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 303-314, December.
  • Handle: RePEc:eee:insuma:v:47:y:2010:i:3:p:303-314
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(10)00082-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. A. John & N. R. Draper, 1980. "An Alternative Family of Transformations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(2), pages 190-197, June.
    2. Yin, Guosheng & Zeng, Donglin & Li, Hui, 2008. "Power-Transformed Linear Quantile Regression With Censored Data," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1214-1224.
    3. Koenker, Roger & Xiao, Zhijie, 2006. "Quantile Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 980-990, September.
    4. Zinoviy Landsman & Emiliano Valdez, 2003. "Tail Conditional Expectations for Elliptical Distributions," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(4), pages 55-71.
    5. Bali, Turan G., 2003. "The generalized extreme value distribution," Economics Letters, Elsevier, vol. 79(3), pages 423-427, June.
    6. Lee, Tae-Hwy & Long, Xiangdong, 2009. "Copula-based multivariate GARCH model with uncorrelated dependent errors," Journal of Econometrics, Elsevier, vol. 150(2), pages 207-218, June.
    7. Turan G. Bali & Panayiotis Theodossiou, 2008. "Risk Measurement Performance of Alternative Distribution Functions," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(2), pages 411-437, June.
    8. Sun, Jiafeng & Frees, Edward W. & Rosenberg, Marjorie A., 2008. "Heavy-tailed longitudinal data modeling using copulas," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 817-830, April.
    9. Frees,Edward W., 2004. "Longitudinal and Panel Data," Cambridge Books, Cambridge University Press, number 9780521828284, October.
    10. Toivanen, Otto, 1997. "Economies of scale and scope in the Finnish non-life insurance industry," Journal of Banking & Finance, Elsevier, vol. 21(6), pages 759-779, June.
    11. Koenker, Roger, 2004. "Quantile regression for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 74-89, October.
    12. Lindsey, J.K. & Lindsey, P.J., 2006. "Multivariate distributions with correlation matrices for nonlinear repeated measurements," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 720-732, February.
    13. Byeongyong Paul Choi & Mary A. Weiss, 2005. "An Empirical Investigation of Market Structure, Efficiency, and Performance in Property‐Liability Insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 72(4), pages 635-673, December.
    14. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, September.
    15. Roger Koenker & Zhijie Xiao, 2004. "Unit Root Quantile Autoregression Inference," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 775-787, January.
    16. Frees, Edward W. & Valdez, Emiliano A., 2008. "Hierarchical Insurance Claims Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1457-1469.
    17. Mu, Yunming & He, Xuming, 2007. "Power Transformation Toward a Linear Regression Quantile," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 269-279, March.
    18. F. Fecher & D. Kessler & S. Perelman & P. Pestieau, 1993. "Productive performance of the French insurance industry," Journal of Productivity Analysis, Springer, vol. 4(1), pages 77-93, June.
    19. Berger, Allen N & Cummins, J David & Weiss, Mary A, 1997. "The Coexistence of Multiple Distribution Systems for Financial Services: The Case of Property-Liability Insurance," The Journal of Business, University of Chicago Press, vol. 70(4), pages 515-546, October.
    20. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    21. Frees,Edward W., 2004. "Longitudinal and Panel Data," Cambridge Books, Cambridge University Press, number 9780521535380, October.
    22. Edward Frees & Ping Wang, 2005. "Credibility Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 9(2), pages 31-48.
    23. Fenn, Paul & Vencappa, Dev & Diacon, Stephen & Klumpes, Paul & O'Brien, Chris, 2008. "Market structure and the efficiency of European insurance companies: A stochastic frontier analysis," Journal of Banking & Finance, Elsevier, vol. 32(1), pages 86-100, January.
    24. Dan Segal, 2002. "An Economic Analysis of Life Insurance Company Expenses," North American Actuarial Journal, Taylor & Francis Journals, vol. 6(4), pages 81-94.
    25. Roger Koenker & Zhijie Xiao, 2002. "Inference on the Quantile Regression Process," Econometrica, Econometric Society, vol. 70(4), pages 1583-1612, July.
    26. Frees, Edward W. & Wang, Ping, 2006. "Copula credibility for aggregate loss models," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 360-373, April.
    27. Cummins, J. David & Weiss, Mary A., 1993. "Measuring cost efficiency in the property-liability insurance industry," Journal of Banking & Finance, Elsevier, vol. 17(2-3), pages 463-481, April.
    28. Zimmer, David M. & Trivedi, Pravin K., 2006. "Using Trivariate Copulas to Model Sample Selection and Treatment Effects: Application to Family Health Care Demand," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 63-76, January.
    29. Gardner, Lisa A. & Grace, Martin F., 1993. "X-Efficiency in the US life insurance industry," Journal of Banking & Finance, Elsevier, vol. 17(2-3), pages 497-510, April.
    30. J. David Cummins & Mary A. Weiss, 1998. "Analyzing Firm Performance in the Insurance Industry Using Frontier Efficiency Methods," Center for Financial Institutions Working Papers 98-22, Wharton School Center for Financial Institutions, University of Pennsylvania.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Peng & Valdez, Emiliano A., 2014. "Multivariate negative binomial models for insurance claim counts," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 18-29.
    2. Peng Shi & Wei Zhang, 2011. "A copula regression model for estimating firm efficiency in the insurance industry," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(10), pages 2271-2287.
    3. Araichi, Sawssen & Peretti, Christian de & Belkacem, Lotfi, 2017. "Reserve modelling and the aggregation of risks using time varying copula models," Economic Modelling, Elsevier, vol. 67(C), pages 149-158.
    4. Hung, Jessica & Chang, Vincent Y. L., 2018. "The analysis of capital structure for propertyliability insurers: A quantile regression approach," Business and Economic Horizons (BEH), Prague Development Center, vol. 14(4), pages 829-850, August.
    5. Kangning Wang & Wen Shan, 2021. "Copula and composite quantile regression-based estimating equations for longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 441-455, June.
    6. Shi, Peng, 2012. "Multivariate longitudinal modeling of insurance company expenses," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 204-215.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jarraya, Bilel & Bouri, Abdelfettah, 2012. "Efficiency concept and investigations in insurance industry: A survey," MPRA Paper 53544, University Library of Munich, Germany, revised 2013.
    2. Sun, Jiafeng & Frees, Edward W. & Rosenberg, Marjorie A., 2008. "Heavy-tailed longitudinal data modeling using copulas," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 817-830, April.
    3. Gourieroux, C. & Jasiak, J., 2008. "Dynamic quantile models," Journal of Econometrics, Elsevier, vol. 147(1), pages 198-205, November.
    4. Edward W. Frees & Gee Lee & Lu Yang, 2016. "Multivariate Frequency-Severity Regression Models in Insurance," Risks, MDPI, vol. 4(1), pages 1-36, February.
    5. Gaglianone, Wagner Piazza & Guillén, Osmani Teixeira de Carvalho & Figueiredo, Francisco Marcos Rodrigues, 2018. "Estimating inflation persistence by quantile autoregression with quantile-specific unit roots," Economic Modelling, Elsevier, vol. 73(C), pages 407-430.
    6. Shuji Yao & Zhongwei Han & Dan Luo, 2010. "Performance of the Chinese Insurance Industry under Economic Reforms," Books, Edward Elgar Publishing, number 12788.
    7. Y. Andriyana & I. Gijbels & A. Verhasselt, 2014. "P-splines quantile regression estimation in varying coefficient models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 153-194, March.
    8. Shi, Peng, 2012. "Multivariate longitudinal modeling of insurance company expenses," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 204-215.
    9. Cummins, J. David & Weiss, Mary A. & Xie, Xiaoying & Zi, Hongmin, 2010. "Economies of scope in financial services: A DEA efficiency analysis of the US insurance industry," Journal of Banking & Finance, Elsevier, vol. 34(7), pages 1525-1539, July.
    10. J. David Cummins & Mary A. Weiss & Hongmin Zi, 1998. "Organizational Form and Efficiency: An Analysis of Stock and Mutual Property-Liability Insurers," Center for Financial Institutions Working Papers 97-02, Wharton School Center for Financial Institutions, University of Pennsylvania.
    11. J. Cummins & Hongmin Zi, 1998. "Comparison of Frontier Efficiency Methods: An Application to the U.S. Life Insurance Industry," Journal of Productivity Analysis, Springer, vol. 10(2), pages 131-152, October.
    12. Kleopatra Nikolaou, 2007. "The behaviour of the real exchange rate: Evidence from regression quantiles," Money Macro and Finance (MMF) Research Group Conference 2006 46, Money Macro and Finance Research Group.
    13. Boengiu, Tudor & Morar Triandafil, Cristina & Morar Triandafil, Adrian, 2011. "Debt Ceiling and External Debt Sustainability in Romania: A Quantile Autoregression Model," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 15-29, December.
    14. Bruzda, Joanna, 2019. "Quantile smoothing in supply chain and logistics forecasting," International Journal of Production Economics, Elsevier, vol. 208(C), pages 122-139.
    15. Guodong Li & Yang Li & Chih-Ling Tsai, 2015. "Quantile Correlations and Quantile Autoregressive Modeling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 246-261, March.
    16. Cho, Jin Seo & Kim, Tae-hwan & Shin, Yongcheol, 2015. "Quantile cointegration in the autoregressive distributed-lag modeling framework," Journal of Econometrics, Elsevier, vol. 188(1), pages 281-300.
    17. Peng Shi & Wei Zhang, 2011. "A copula regression model for estimating firm efficiency in the insurance industry," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(10), pages 2271-2287.
    18. Lijuan Huo & Tae-Hwan Kim & Yunmi Kim, 2013. "Testing for Autocorrelation in Quantile Regression Models," Working papers 2013rwp-54, Yonsei University, Yonsei Economics Research Institute.
    19. Covas, Francisco B. & Rump, Ben & Zakrajšek, Egon, 2014. "Stress-testing US bank holding companies: A dynamic panel quantile regression approach," International Journal of Forecasting, Elsevier, vol. 30(3), pages 691-713.
    20. Qu, Zhongjun, 2008. "Testing for structural change in regression quantiles," Journal of Econometrics, Elsevier, vol. 146(1), pages 170-184, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:47:y:2010:i:3:p:303-314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.