IDEAS home Printed from https://ideas.repec.org/a/aoq/ekonom/y2023i2p174-194.html
   My bibliography  Save this article

Sektorowe zróżnicowanie efektu interwału akcji spółek z GPW w dobie pandemii COVID-19

Author

Listed:
  • Bartłomiej Lisicki

Abstract

Głównym celem niniejszego opracowania jest weryfikacja występowania zróżnicowania efektu interwału współczynnika beta (β) akcji spółek notowanych na GPW w Warszawie (GPW) w trakcie trwania pandemii COVID-19 ze względu na ich przynależność makrosektorową. Współczynniki β obliczono przy zastosowaniu klasycznej metody najmniejszych kwadratów na próbie emitentów zgrupowanych w indeksach: WIG20, mWIG40 oraz sWIG80. Analizując wartości β szacowane na podstawie wskazanych horyzontów czasowych stóp zwrotu w latach pandemii COVID-19, można dostrzec występowanie efektu interwału β w przypadku spółek z makrosektorów finanse oraz produkcja przemysłowa i budowlano-montażowa. Co ciekawe, branże te w latach przedpandemicznych nie wykazywały istotnych statystycznie różnic między wartościami β. Efekt interwału w latach poprzedzających pandemię COVID-19 odnotowano z kolei w przypadku spółek z makrosektorów ochrona zdrowia oraz handel i usługi. Bazując na uzyskanych rezultatach badawczych, zaobserwować można wpływ pandemii COVID-19 na sektorowe zróżnicowanie efektu interwału. W latach jej trwania istotność statystyczna różnic w oszacowaniach współczynników β dotyczyła spółek z innych makrosektorów niż w latach ją poprzedzających.

Suggested Citation

  • Bartłomiej Lisicki, 2023. "Sektorowe zróżnicowanie efektu interwału akcji spółek z GPW w dobie pandemii COVID-19," Ekonomista, Polskie Towarzystwo Ekonomiczne, issue 2, pages 174-194.
  • Handle: RePEc:aoq:ekonom:y:2023:i:2:p:174-194
    as

    Download full text from publisher

    File URL: https://ekonomista.pte.pl/pdf-166247-91918
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Serdar Neslihanoglu, 2021. "Linearity extensions of the market model: a case of the top 10 cryptocurrency prices during the pre-COVID-19 and COVID-19 periods," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-27, December.
    2. Rizvi, Syed Aun R. & Arshad, Shaista, 2018. "Understanding time-varying systematic risks in Islamic and conventional sectoral indices," Economic Modelling, Elsevier, vol. 70(C), pages 561-570.
    3. R.W. Faff & R.D. Brooks, 1998. "Time‐varying Beta Risk for Australian Industry Portfolios: An Exploratory Analysis," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 25(5‐6), pages 721-745, June.
    4. William F. Sharpe, 1963. "A Simplified Model for Portfolio Analysis," Management Science, INFORMS, vol. 9(2), pages 277-293, January.
    5. Handa, Puneet & Kothari, S. P. & Wasley, Charles, 1989. "The relation between the return interval and betas : Implications for the size effect," Journal of Financial Economics, Elsevier, vol. 23(1), pages 79-100, June.
    6. Corhay, Albert, 1992. "The intervalling effect bias in beta: A note," Journal of Banking & Finance, Elsevier, vol. 16(1), pages 61-73, February.
    7. Robert D. Brooks & Robert W. Faff & Michael D. McKenzie, 1998. "Time†Varying Beta Risk of Australian Industry Portfolios: A Comparison of Modelling Techniques," Australian Journal of Management, Australian School of Business, vol. 23(1), pages 1-22, June.
    8. Joakim Westerlund & Paresh Narayan, 2015. "Testing for Predictability in Conditionally Heteroskedastic Stock Returns," Journal of Financial Econometrics, Oxford University Press, vol. 13(2), pages 342-375.
    9. Stefano Ramelli & Alexander F Wagner, 2020. "Feverish Stock Price Reactions to COVID-19," The Review of Corporate Finance Studies, Society for Financial Studies, vol. 9(3), pages 622-655.
    10. Janusz Brzeszczyński & Jerzy Gajdka & Tomasz Schabek, 2011. "The Role of Stock Size and Trading Intensity in the Magnitude of the "Interval Effect" in Beta Estimation: Empirical Evidence from the Polish Capital Market," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 47(1), pages 28-49, January.
    11. R.W. Faff & R.D. Brooks, 1998. "Time‐varying Beta Risk for Australian Industry Portfolios: An Exploratory Analysis," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 25(5‐6), pages 721-745, June.
    12. Blume, Marshall E, 1975. "Betas and Their Regression Tendencies," Journal of Finance, American Finance Association, vol. 30(3), pages 785-795, June.
    13. Cakici, Nusret & Zaremba, Adam, 2021. "Who should be afraid of infections? Pandemic exposure and the cross-section of stock returns," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 72(C).
    14. Zhang, Dayong & Hu, Min & Ji, Qiang, 2020. "Financial markets under the global pandemic of COVID-19," Finance Research Letters, Elsevier, vol. 36(C).
    15. Choudhry, Taufiq & Lu, Lin & Peng, Ke, 2010. "Time-varying beta and the Asian financial crisis: Evidence from the Asian industrial sectors," Japan and the World Economy, Elsevier, vol. 22(4), pages 228-234, December.
    16. Hawawini, Gabriel, 1983. "Why beta shifts as the return interval changes," MPRA Paper 44893, University Library of Munich, Germany.
    17. Omair Haroon & Mohsin Ali & Abdullah Khan & Mudeer A. Khattak & Syed Aun R. Rizvi, 2021. "Financial Market Risks during the COVID-19 Pandemic," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 57(8), pages 2407-2414, June.
    18. A. Craig MacKinlay, 1997. "Event Studies in Economics and Finance," Journal of Economic Literature, American Economic Association, vol. 35(1), pages 13-39, March.
    19. Brailsford, Timothy J. & Josev, Thomas, 1997. "The impact of the return interval on the estimation of systematic risk," Pacific-Basin Finance Journal, Elsevier, vol. 5(3), pages 357-376, July.
    20. Dragos Stefan Oprea, 2015. "The Interval Effect in Estimating Beta: Empirical Evidence from the Romanian Stock Market," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 7(2), pages 016-025, December.
    21. Dimitrios Dadakas & Christos Karpetis & Athanasios Fassas & Erotokritos Varelas, 2016. "Sectoral Differences in the Choice of the Time Horizon during Estimation of the Unconditional Stock Beta," IJFS, MDPI, vol. 4(4), pages 1-13, December.
    22. Kang Hua Cao & Chi-Keung Woo & Ya Li & Yun Liu, 2022. "Covid-19’s effect on the alpha and beta of a US stock Exchange Traded Fund," Applied Economics Letters, Taylor & Francis Journals, vol. 29(2), pages 123-128, January.
    23. Francisco López Herrera & Jaime González Maiz Jiménez & Adán Reyes Santiago, 2022. "Forecasting Performance of Different Betas: Mexican Stocks before and during the COVID-19 Pandemic," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 58(13), pages 3868-3880, October.
    24. Pogue, Gerald A. & Solnik, Bruno H., 1974. "The Market Model Applied to European Common Stocks: Some Empirical Results," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 9(6), pages 917-944, December.
    25. repec:eme:mfppss:mf-05-2021-0226 is not listed on IDEAS
    26. Jacobsen, Ben & Dannenburg, Dennis, 2003. "Volatility clustering in monthly stock returns," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 479-503, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masih, Mansur & Alzahrani, Mohammed & Al-Titi, Omar, 2010. "Systematic risk and time scales: New evidence from an application of wavelet approach to the emerging Gulf stock markets," International Review of Financial Analysis, Elsevier, vol. 19(1), pages 10-18, January.
    2. Georgios Mantsios & Stylianos Xanthopoulos, 2016. "The Beta intervalling effect during a deep economic crisis - evidence from Greece," International Journal of Business and Economic Sciences Applied Research (IJBESAR), International Hellenic University (IHU), Kavala Campus, Greece (formerly Eastern Macedonia and Thrace Institute of Technology - EMaTTech), vol. 9(1), pages 19-26, April.
    3. Dimitrios Dadakas & Christos Karpetis & Athanasios Fassas & Erotokritos Varelas, 2016. "Sectoral Differences in the Choice of the Time Horizon during Estimation of the Unconditional Stock Beta," IJFS, MDPI, vol. 4(4), pages 1-13, December.
    4. Bilbao, A. & Arenas, M. & Rodriguez, M.V. & Antomil, J., 2007. "On constructing expert Betas for single-index model," European Journal of Operational Research, Elsevier, vol. 183(2), pages 827-847, December.
    5. Dębski Wiesław & Feder-Sempach Ewa & Świderski Bartosz, 2014. "Intervalling Effect On Estimating The Beta Parameter For The Largest Companies On The WSE," Folia Oeconomica Stetinensia, Sciendo, vol. 14(2), pages 270-286, December.
    6. Roman Mestre, 2023. "Stock profiling using time–frequency-varying systematic risk measure," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-29, December.
    7. Heyden, Kim J. & Heyden, Thomas, 2021. "Market reactions to the arrival and containment of COVID-19: An event study," Finance Research Letters, Elsevier, vol. 38(C).
    8. Chenglu Jin & Thomas Conlon & John Cotter, 2023. "Co-Skewness across Return Horizons," Journal of Financial Econometrics, Oxford University Press, vol. 21(5), pages 1483-1518.
    9. Hong, Jiawei & Yu, Xiaojian & Xiao, Weilin & Zhang, Xili, 2022. "The dispersion of beta estimates and the investors’ heterogeneous Beliefs:Evidence from the stock market in China," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 540-550.
    10. Dragos Stefan Oprea, 2015. "The Interval Effect in Estimating Beta: Empirical Evidence from the Romanian Stock Market," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 7(2), pages 016-025, December.
    11. Gregory, Alan & Hua, Shan & Tharyan, Rajesh, 2018. "In search of beta," The British Accounting Review, Elsevier, vol. 50(4), pages 425-441.
    12. Alfred Mbairadjim Moussa & Jules Sadefo Kamdem, 2022. "A fuzzy multifactor asset pricing model," Annals of Operations Research, Springer, vol. 313(2), pages 1221-1241, June.
    13. Michal Bernardelli & Zbigniew Korzeb & Pawel Niedziolka, 2021. "The banking sector as the absorber of the COVID-19 crisis’ economic consequences: perception of WSE investors," Oeconomia Copernicana, Institute of Economic Research, vol. 12(2), pages 335-374, June.
    14. Atilla Cifter & Alper Ozun, 2008. "Multiscale Systematic Risk: an Application on the ISE-30," Istanbul Stock Exchange Review, Research and Business Development Department, Borsa Istanbul, vol. 10(38), pages 1-24.
    15. Puhr, Harald & Müllner, Jakob, 2022. "Foreign to all but fluent in many: The effect of multinationality on shock resilience," Journal of World Business, Elsevier, vol. 57(6).
    16. Wang, Zhixuan & Dong, Yanli & Liu, Ailan, 2022. "How does China's stock market react to supply chain disruptions from COVID-19?," International Review of Financial Analysis, Elsevier, vol. 82(C).
    17. Maik Eisenbeiss & Goran Kauermann & Willi Semmler, 2007. "Estimating Beta-Coefficients of German Stock Data: A Non-Parametric Approach," The European Journal of Finance, Taylor & Francis Journals, vol. 13(6), pages 503-522.
    18. Ortas, E. & Salvador, M. & Moneva, J.M., 2015. "Improved beta modeling and forecasting: An unobserved component approach with conditional heteroscedastic disturbances," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 27-51.
    19. Mbairadjim Moussa, A. & Sadefo Kamdem, J. & Shapiro, A.F. & Terraza, M., 2014. "CAPM with fuzzy returns and hypothesis testing," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 40-57.
    20. Albert Corhay & Alireza Tourani Rad, 1993. "Return Interval, Firm Size And Systematic Risk On The Dutch Stock Market," Review of Financial Economics, John Wiley & Sons, vol. 2(2), pages 19-28, March.

    More about this item

    Keywords

    akcje; COVID-19; współczynnik beta; GPW w Warszawie; efekt interwału;
    All these keywords.

    JEL classification:

    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aoq:ekonom:y:2023:i:2:p:174-194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tomasz Kwarcinski (email available below). General contact details of provider: https://edirc.repec.org/data/pteeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.