IDEAS home Printed from https://ideas.repec.org/a/aic/journl/y2011vsep115-123.html
   My bibliography  Save this article

Econometric Models Used For Managing The Market Risk In The Romanian Banking System

Author

Listed:
  • Ioan Trenca

    (Faculty of Economics and Business Administration Babeş-Bolyai University Cluj-Napoca, Romania)

  • Simona Mutu

    (Faculty of Economics and Business Administration Babeş-Bolyai University Cluj-Napoca, Romania)

  • Nicolae Petria

    (Faculty of Economics Lucian-Blaga University Sibiu, Romania)

Abstract

Taking into account that one of the most important factors which have caused the financial crisis was the bad risk management practices in banks we want to confirm the need to develop more efficient risk management practices. The fact that return distributions are characterized by time varying vola- tility poses some challenges in the estimation, especially in the period of severe financial crisis. In order to remedy this problem we propose the Extreme Value Theory as an alternative to VaR for quan- tifying the banks’ exposures to interest rate risk. EVT models are more robust to fat-tailedness in the conditional distribution of returns and are preferred in the modeling of interest rate risk in periods with extreme variations. Finally, we assess the performance of the model analyzing the interest rate risk on the Romanian inter-bank market by measures that address its conservativeness, accuracy and efficiency, in the context of Basel II principles.

Suggested Citation

  • Ioan Trenca & Simona Mutu & Nicolae Petria, 2011. "Econometric Models Used For Managing The Market Risk In The Romanian Banking System," Analele Stiintifice ale Universitatii "Alexandru Ioan Cuza" din Iasi - Stiinte Economice (1954-2015), Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, vol. 2011, pages 115-123, july.
  • Handle: RePEc:aic:journl:y:2011:v:se:p:115-123
    as

    Download full text from publisher

    File URL: http://anale.feaa.uaic.ro/anale/resurse/2011SEfin5trenca.pdf
    Download Restriction: no

    File URL: http://anale.feaa.uaic.ro/anale/ro/Arhiva%202011SE-Trenca_Mutu_Petria/436
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Younes Bensalah, 2000. "Steps in Applying Extreme Value Theory to Finance: A Review," Staff Working Papers 00-20, Bank of Canada.
    2. Dowd, Kevin, 2000. "Adjusting for risk:: An improved Sharpe ratio," International Review of Economics & Finance, Elsevier, vol. 9(3), pages 209-222, July.
    3. Schaumburg, Julia, 2010. "Predicting extreme VaR: Nonparametric quantile regression with refinements from extreme value theory," SFB 649 Discussion Papers 2010-009, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    2. Gonzalo Cortazar & Alejandro Bernales & Diether Beuermann, 2005. "Methodology and Implementation of Value-at-Risk Measures in Emerging Fixed-Income Markets with Infrequent Trading," Finance 0512030, University Library of Munich, Germany.
    3. Muteba Mwamba, John & Mhlanga, Isaah, 2013. "Extreme conditional value at risk: a coherent scenario for risk management," MPRA Paper 64387, University Library of Munich, Germany.
    4. Kokoszka Piotr & Miao Hong & Stoev Stilian & Zheng Ben, 2019. "Risk Analysis of Cumulative Intraday Return Curves," Journal of Time Series Econometrics, De Gruyter, vol. 11(2), pages 1-31, July.
    5. Lesedi Mabitsela & Eben Maré & Rodwell Kufakunesu, 2015. "Quantification of VaR: A Note on VaR Valuation in the South African Equity Market," JRFM, MDPI, vol. 8(1), pages 1-24, February.
    6. Sofiane Aboura, 2014. "When the U.S. Stock Market Becomes Extreme?," Risks, MDPI, vol. 2(2), pages 1-15, May.
    7. Berens, Tobias & Weiß, Gregor N.F. & Wied, Dominik, 2015. "Testing for structural breaks in correlations: Does it improve Value-at-Risk forecasting?," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 135-152.
    8. Alex Huang, 2013. "Value at risk estimation by quantile regression and kernel estimator," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 225-251, August.
    9. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.
    10. G. D. Gettinby & C. D. Sinclair & D. M. Power & R. A. Brown, 2004. "An Analysis of the Distribution of Extreme Share Returns in the UK from 1975 to 2000," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 31(5‐6), pages 607-646, June.
    11. Dimitrakopoulos, Dimitris N. & Kavussanos, Manolis G. & Spyrou, Spyros I., 2010. "Value at risk models for volatile emerging markets equity portfolios," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(4), pages 515-526, November.
    12. Qifa Xu & Lu Chen & Cuixia Jiang & Yezheng Liu, 2022. "Forecasting expected shortfall and value at risk with a joint elicitable mixed data sampling model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 407-421, April.
    13. Jesse M. Keenan & Anurag Gumber, 2019. "California climate adaptation trust fund: exploring the leveraging of cap-and-trade proceeds," Environment Systems and Decisions, Springer, vol. 39(4), pages 454-465, December.
    14. Luo, Weiwei & Brooks, Robert D. & Silvapulle, Param, 2011. "Effects of the open policy on the dependence between the Chinese 'A' stock market and other equity markets: An industry sector perspective," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 21(1), pages 49-74, February.
    15. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    16. Ibrahim Ergen, 2014. "Tail dependence and diversification benefits in emerging market stocks: an extreme value theory approach," Applied Economics, Taylor & Francis Journals, vol. 46(19), pages 2215-2227, July.
    17. H. Kaibuchi & Y. Kawasaki & G. Stupfler, 2022. "GARCH-UGH: a bias-reduced approach for dynamic extreme Value-at-Risk estimation in financial time series," Quantitative Finance, Taylor & Francis Journals, vol. 22(7), pages 1277-1294, July.
    18. Martins-Filho, Carlos & Yao, Feng & Torero, Maximo, 2018. "Nonparametric Estimation Of Conditional Value-At-Risk And Expected Shortfall Based On Extreme Value Theory," Econometric Theory, Cambridge University Press, vol. 34(1), pages 23-67, February.
    19. Evangelos Vasileiou, 2022. "Inaccurate Value at Risk Estimations: Bad Modeling or Inappropriate Data?," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1155-1171, March.
    20. Xisong Jin, 2018. "How much does book value data tell us about systemic risk and its interactions with the macroeconomy? A Luxembourg empirical evaluation," BCL working papers 118, Central Bank of Luxembourg.

    More about this item

    Keywords

    value at risk; time varying volatility; interest rate risk; extreme value theory;
    All these keywords.

    JEL classification:

    • G01 - Financial Economics - - General - - - Financial Crises
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aic:journl:y:2011:v:se:p:115-123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sireteanu Napoleon-Alexandru (email available below). General contact details of provider: https://edirc.repec.org/data/feaicro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.