IDEAS home Printed from https://ideas.repec.org/a/aib/ibtjbs/v11y2015i2p41-54.html
   My bibliography  Save this article

Role Of Hurst Exponent In Prediction Of Market Efficiency In Kse-100 Index

Author

Listed:
  • Syeda Tayyaba Ijaz

    (Department of Business Administration, International Islamic University Islamabad)

  • Rabia Komal

    (Pakistan Institute of Development Economics (PIDE), Islamabad)

Abstract

Purpose This paper aims to investigate the Efficient Market Hypothesis EMH and validity of Random Walk Model RWM in KSE100 index starting from 1992 till 2014 taking monthly averages of index.Methodology Main focus of the paper is to evaluate the efficiency in KSE100 index with respect to application of Hurst Exponent and Rescaled Ranged Statistics.Although many researchers have previously explained the working of EMH in KSE100 index but rarely anyone has explained it using Hurst Exponent Analysis on over all longest period since the establishment of KSE100 index Feb, 1992 to Dec, 2014.Annual Rescaled Range Statistics are also calculated to explain the good or bad years according to Estimated Hurst Statistics.All statistical analysis has been performed on Gretl which gives the good grasp over Hurst Exponent Analysis.Results The results revealed that overall KSE100 index is not following the random walk and is not performing efficiently, and yearly break up shows that market was persistent in few years but mostly it was antipersistent longrun memory prevails.Practical Implication Implementing Hurst Exponent Analysis enabled us to get rigorous result about performance of the Pakistan stock market in terms of efficiency that implied chances of arbitrage opportunity prevail significantly.

Suggested Citation

  • Syeda Tayyaba Ijaz & Rabia Komal, 2015. "Role Of Hurst Exponent In Prediction Of Market Efficiency In Kse-100 Index," IBT Journal of Business Studies (JBS), Ilma University, Faculty of Management Science, vol. 11(2), pages 41-54.
  • Handle: RePEc:aib:ibtjbs:v:11:y:2015:i:2:p:41-54
    DOI: https://doi.org/10.46745/ilma.ibtjbs.2015.112.4
    as

    Download full text from publisher

    File URL: http://ibtjbs.ilmauniversity.edu.pk/journal/jbs/11.2/4.%20Role%20of%20Hurst%20Exponent%20in%20Prediction%20of%20Market%20Efficiency%20in%20KSE-100%20Index.pdf
    Download Restriction: no

    File URL: https://libkey.io/https://doi.org/10.46745/ilma.ibtjbs.2015.112.4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mirzaee Ghazani, Majid & Khalili Araghi, Mansour, 2014. "Evaluation of the adaptive market hypothesis as an evolutionary perspective on market efficiency: Evidence from the Tehran stock exchange," Research in International Business and Finance, Elsevier, vol. 32(C), pages 50-59.
    2. Kim, Jae H. & Shamsuddin, Abul, 2008. "Are Asian stock markets efficient? Evidence from new multiple variance ratio tests," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 518-532, June.
    3. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    4. Rodriguez, E. & Aguilar-Cornejo, M. & Femat, R. & Alvarez-Ramirez, J., 2014. "US stock market efficiency over weekly, monthly, quarterly and yearly time scales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 554-564.
    5. Robin L. Lumsdaine & David H. Papell, 1997. "Multiple Trend Breaks And The Unit-Root Hypothesis," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 212-218, May.
    6. Amélie Charles & Olivier Darné, 2009. "Variance‐Ratio Tests Of Random Walk: An Overview," Journal of Economic Surveys, Wiley Blackwell, vol. 23(3), pages 503-527, July.
    7. Katusiime, Lorna & Shamsuddin, Abul & Agbola, Frank W., 2015. "Macroeconomic and market microstructure modelling of Ugandan exchange rate," Economic Modelling, Elsevier, vol. 45(C), pages 175-186.
    8. Chen, Shu-Heng & Yeh, Chia-Hsuan, 2001. "Evolving traders and the business school with genetic programming: A new architecture of the agent-based artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 363-393, March.
    9. Kan, Denis & Andreosso-O'Callaghan, B., 2007. "Examination of the efficient market hypothesis--the case of post-crisis Asia Pacific countries," Journal of Asian Economics, Elsevier, vol. 18(2), pages 294-313, April.
    10. Charles, Amélie & Darné, Olivier & Kim, Jae H., 2015. "Will precious metals shine? A market efficiency perspective," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 284-291.
    11. Gozbasi, Onur & Kucukkaplan, Ilhan & Nazlioglu, Saban, 2014. "Re-examining the Turkish stock market efficiency: Evidence from nonlinear unit root tests," Economic Modelling, Elsevier, vol. 38(C), pages 381-384.
    12. Manahov, Viktor & Hudson, Robert & Hoque, Hafiz, 2015. "Return predictability and the ‘wisdom of crowds’: Genetic Programming trading algorithms, the Marginal Trader Hypothesis and the Hayek Hypothesis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 37(C), pages 85-98.
    13. Jamaani, Fouad & Roca, Eduardo, 2015. "Are the regional Gulf stock markets weak-form efficient as single stock markets and as a regional stock market?," Research in International Business and Finance, Elsevier, vol. 33(C), pages 221-246.
    14. Aumeboonsuke, Vesarach & Dryver, Arthur L., 2014. "The importance of using a test of weak-form market efficiency that does not require investigating the data first," International Review of Economics & Finance, Elsevier, vol. 33(C), pages 350-357.
    15. repec:hal:pseose:halshs-01156413 is not listed on IDEAS
    16. Chen, Shu-Heng & Yeh, Chia-Hsuan, 2002. "On the emergent properties of artificial stock markets: the efficient market hypothesis and the rational expectations hypothesis," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 217-239, October.
    17. Homma, Tetsushi & Tsutsui, Yoshiro & Uchida, Hirofumi, 2014. "Firm growth and efficiency in the banking industry: A new test of the efficient structure hypothesis," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 143-153.
    18. Akhigbe, Aigbe & Whyte, Ann Marie, 2015. "SEO announcement returns and internal capital market efficiency," Journal of Corporate Finance, Elsevier, vol. 31(C), pages 271-283.
    19. Bianchi, Milo & Jehiel, Philippe, 2015. "Financial reporting and market efficiency with extrapolative investors," Journal of Economic Theory, Elsevier, vol. 157(C), pages 842-878.
    20. Lee, Chien-Chiang & Lee, Jun-De, 2009. "Energy prices, multiple structural breaks, and efficient market hypothesis," Applied Energy, Elsevier, vol. 86(4), pages 466-479, April.
    21. Manahov, Viktor & Hudson, Robert & Gebka, Bartosz, 2014. "Does high frequency trading affect technical analysis and market efficiency? And if so, how?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 28(C), pages 131-157.
    22. Eom, Cheoljun & Choi, Sunghoon & Oh, Gabjin & Jung, Woo-Sung, 2008. "Hurst exponent and prediction based on weak-form efficient market hypothesis of stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(18), pages 4630-4636.
    23. Hull, Matthew & McGroarty, Frank, 2014. "Do emerging markets become more efficient as they develop? Long memory persistence in equity indices," Emerging Markets Review, Elsevier, vol. 18(C), pages 45-61.
    24. Lee, Chien-Chiang & Lee, Jun-De & Lee, Chi-Chuan, 2010. "Stock prices and the efficient market hypothesis: Evidence from a panel stationary test with structural breaks," Japan and the World Economy, Elsevier, vol. 22(1), pages 49-58, January.
    25. Alvarez-Ramirez, Jose & Rodriguez, Eduardo & Espinosa-Paredes, Gilberto, 2012. "Is the US stock market becoming weakly efficient over time? Evidence from 80-year-long data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5643-5647.
    26. Urquhart, Andrew & McGroarty, Frank, 2014. "Calendar effects, market conditions and the Adaptive Market Hypothesis: Evidence from long-run U.S. data," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 154-166.
    27. Ho, Yan-Ki, 1985. "A test of the incrementally efficient market hypothesis for the London gold market," Economics Letters, Elsevier, vol. 19(1), pages 67-70.
    28. Mobarek, Asma & Fiorante, Angelo, 2014. "The prospects of BRIC countries: Testing weak-form market efficiency," Research in International Business and Finance, Elsevier, vol. 30(C), pages 217-232.
    29. Majumder, Debasish, 2013. "Towards an efficient stock market: Empirical evidence from the Indian market," Journal of Policy Modeling, Elsevier, vol. 35(4), pages 572-587.
    30. Abounoori, Esmaiel & Shahrazi, Mahdi & Rasekhi, Saeed, 2012. "An investigation of Forex market efficiency based on detrended fluctuation analysis: A case study for Iran," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3170-3179.
    31. Majumder, Debasish, 2014. "Asset pricing for inefficient markets: Evidence from China and India," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 282-291.
    32. Urquhart, Andrew & Hudson, Robert, 2013. "Efficient or adaptive markets? Evidence from major stock markets using very long run historic data," International Review of Financial Analysis, Elsevier, vol. 28(C), pages 130-142.
    33. Rizvi, Syed Aun R. & Dewandaru, Ginanjar & Bacha, Obiyathulla I. & Masih, Mansur, 2014. "An analysis of stock market efficiency: Developed vs Islamic stock markets using MF-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 86-99.
    34. Goodhart, Charles, 1986. "Financial Innovation and Monetary Control," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 2(4), pages 79-102, Winter.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hayat, Farah & Pirzada, Muhammad Daniel Saeed & Khan, Abid Ali, 2018. "The validation of Granger causality through formulation and use of finance-growth-energy indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1859-1867.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Syeda Tayyaba Ijaz & Rabia Komal, 2015. "Role Of Hurst Exponent In Prediction Of Market Efficiency In Kse-100 Index," IBT Journal of Business Studies (JBS), Ilma University, Faculty of Management Science, vol. 11(2), pages 11-14.
    2. Mr. M. Awais Mehmood & Dr. Faisal Aftab & Dr. Hafiz Mushtaq, 2016. "Role Of Social Media Marketing (Smm) In Hei’S Admission," IBT Journal of Business Studies (JBS), Ilma University, Faculty of Management Science, vol. 12(1), pages 12-10.
    3. Urquhart, Andrew & McGroarty, Frank, 2016. "Are stock markets really efficient? Evidence of the adaptive market hypothesis," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 39-49.
    4. Pınar Evrim Mandacı & F. Dilvin Taskın & Zeliha Can Ergun, 2019. "Adaptive Market Hypothesis," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(4), pages 84-101.
    5. Xiong, Xiong & Meng, Yongqiang & Li, Xiao & Shen, Dehua, 2019. "An empirical analysis of the Adaptive Market Hypothesis with calendar effects:Evidence from China," Finance Research Letters, Elsevier, vol. 31(C).
    6. Tiwari, Aviral Kumar & Albulescu, Claudiu Tiberiu & Yoon, Seong-Min, 2017. "A multifractal detrended fluctuation analysis of financial market efficiency: Comparison using Dow Jones sector ETF indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 182-192.
    7. Ali, Sajid & Shahzad, Syed Jawad Hussain & Raza, Naveed & Al-Yahyaee, Khamis Hamed, 2018. "Stock market efficiency: A comparative analysis of Islamic and conventional stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 139-153.
    8. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2019. "Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature," JRFM, MDPI, vol. 12(2), pages 1-18, June.
    9. Al-Khazali, Osamah & Mirzaei, Ali, 2017. "Stock market anomalies, market efficiency and the adaptive market hypothesis: Evidence from Islamic stock indices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 51(C), pages 190-208.
    10. Choi, Sun-Yong, 2021. "Analysis of stock market efficiency during crisis periods in the US stock market: Differences between the global financial crisis and COVID-19 pandemic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    11. Biswabhusan Bhuyan & Subhamitra Patra & Ranjan Kumar Bhuian, 2020. "Market Adaptability and Evolving Predictability of Stock Returns: An Evidence from India," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 27(4), pages 605-619, December.
    12. Jasman Tuyon & Zamri Ahmada, 2016. "Behavioural finance perspectives on Malaysian stock market efficiency," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 16(1), pages 43-61, March.
    13. Manahov, Viktor & Urquhart, Andrew, 2021. "The efficiency of Bitcoin: A strongly typed genetic programming approach to smart electronic Bitcoin markets," International Review of Financial Analysis, Elsevier, vol. 73(C).
    14. Andrew Urquhart, 2017. "How predictable are precious metal returns?," The European Journal of Finance, Taylor & Francis Journals, vol. 23(14), pages 1390-1413, November.
    15. Gu, Rongbao & Xiong, Wei & Li, Xinjie, 2015. "Does the singular value decomposition entropy have predictive power for stock market? — Evidence from the Shenzhen stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 439(C), pages 103-113.
    16. Mushinada, Venkata Narasimha Chary, 2020. "Are individual investors irrational or adaptive to market dynamics?," Journal of Behavioral and Experimental Finance, Elsevier, vol. 25(C).
    17. Rahman, Md. Lutfur & Lee, Doowon & Shamsuddin, Abul, 2017. "Time-varying return predictability in South Asian equity markets," International Review of Economics & Finance, Elsevier, vol. 48(C), pages 179-200.
    18. Ioana-Andreea Boboc & Mihai-Cristian Dinică, 2013. "An Algorithm for Testing the Efficient Market Hypothesis," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-11, October.
    19. Lee, Minhyuk & Song, Jae Wook & Kim, Sondo & Chang, Woojin, 2018. "Asymmetric market efficiency using the index-based asymmetric-MFDFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1278-1294.
    20. Boya, Christophe M., 2019. "From efficient markets to adaptive markets: Evidence from the French stock exchange," Research in International Business and Finance, Elsevier, vol. 49(C), pages 156-165.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aib:ibtjbs:v:11:y:2015:i:2:p:41-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Syed Kashif Rafi (email available below). General contact details of provider: https://edirc.repec.org/data/fmilmpk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.