IDEAS home Printed from https://ideas.repec.org/a/ahs/journl/v6y2021i1p16-35.html
   My bibliography  Save this article

Forecasting of Volatility in Stock Exchange Markets by MS-GARCH Approach: An Application of Borsa Istanbul

Author

Listed:
  • Abdulkadir Kaya
  • İkram Yusuf Yarbaşı

Abstract

The volatility observed in securities markets has an important influence on the decision making processes of stock market stakeholders. In this study, the volatilities in BIST100 index which represents Borsa Istanbul was analyzed. For this purpose, BIST100 index closing data for the period of 03.01.1988-20.04.2018 was used in the study. The BIST100 index was analyzed by Markov regime switching GARCH (MS-GARCH) with three regimes, standard, high and low volatility regimes. As a result of the triple regime MS-GARCH intensive analysis, the existence of endogenous regimens was determined, in which the regime coefficients considered for the index were statistically significant. When the possibilities of regime transitions are analyzed, it is determined that the probability of continuing the standard volatility regime is 0.62, the probability of transition to low volatility regime is 0.23 and the probability of transition to high volatility regime is 0.145. Moreover, it was determined that the possibilities of regime passage in 5 and 20 days are very close to each other.

Suggested Citation

  • Abdulkadir Kaya & İkram Yusuf Yarbaşı, 2021. "Forecasting of Volatility in Stock Exchange Markets by MS-GARCH Approach: An Application of Borsa Istanbul," Journal of Research in Economics, Politics & Finance, Ersan ERSOY, vol. 6(1), pages 16-35.
  • Handle: RePEc:ahs:journl:v:6:y:2021:i:1:p:16-35
    DOI: 10.30784/epfad.740815
    as

    Download full text from publisher

    File URL: https://dergipark.org.tr/tr/download/article-file/1113939
    Download Restriction: no

    File URL: https://libkey.io/10.30784/epfad.740815?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jun Tu, 2010. "Is Regime Switching in Stock Returns Important in Portfolio Decisions?," Management Science, INFORMS, vol. 56(7), pages 1198-1215, July.
    2. Turner, Christopher M. & Startz, Richard & Nelson, Charles R., 1989. "A Markov model of heteroskedasticity, risk, and learning in the stock market," Journal of Financial Economics, Elsevier, vol. 25(1), pages 3-22, November.
    3. Moore, Tomoe & Wang, Ping, 2007. "Volatility in stock returns for new EU member states: Markov regime switching model," International Review of Financial Analysis, Elsevier, vol. 16(3), pages 282-292.
    4. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    5. Ardia, David & Bluteau, Keven & Rüede, Maxime, 2019. "Regime changes in Bitcoin GARCH volatility dynamics," Finance Research Letters, Elsevier, vol. 29(C), pages 266-271.
    6. Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.
    7. Franc Klaassen, 2002. "Improving GARCH volatility forecasts with regime-switching GARCH," Empirical Economics, Springer, vol. 27(2), pages 363-394.
    8. Abounoori, Esmaiel & Elmi, Zahra (Mila) & Nademi, Younes, 2016. "Forecasting Tehran stock exchange volatility; Markov switching GARCH approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 264-282.
    9. Huntley Schaller & Simon Van Norden, 1997. "Regime switching in stock market returns," Applied Financial Economics, Taylor & Francis Journals, vol. 7(2), pages 177-191.
    10. Stephen Satchell, 2011. "Regime-switching in financial markets," Journal of Asset Management, Palgrave Macmillan, vol. 12(5), pages 309-309, November.
    11. Satchell, Stephen & Knight, John, 2007. "Forecasting Volatility in the Financial Markets," Elsevier Monographs, Elsevier, edition 3, number 9780750669429.
    12. David Ardia, 2008. "Financial Risk Management with Bayesian Estimation of GARCH Models," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-78657-3, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    2. Urom, Christian & Onwuka, Kevin O. & Uma, Kalu E. & Yuni, Denis N., 2020. "Regime dependent effects and cyclical volatility spillover between crude oil price movements and stock returns," International Economics, Elsevier, vol. 161(C), pages 10-29.
    3. Leandro Maciel, 2021. "Cryptocurrencies value‐at‐risk and expected shortfall: Do regime‐switching volatility models improve forecasting?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4840-4855, July.
    4. Walid, Chkili & Chaker, Aloui & Masood, Omar & Fry, John, 2011. "Stock market volatility and exchange rates in emerging countries: A Markov-state switching approach," Emerging Markets Review, Elsevier, vol. 12(3), pages 272-292, September.
    5. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    6. Panagiotidis, Theodore & Papapanagiotou, Georgios & Stengos, Thanasis, 2022. "On the volatility of cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 62(C).
    7. Caporale, Guglielmo Maria & Zekokh, Timur, 2019. "Modelling volatility of cryptocurrencies using Markov-Switching GARCH models," Research in International Business and Finance, Elsevier, vol. 48(C), pages 143-155.
    8. Naeem, Muhammad & Tiwari, Aviral Kumar & Mubashra, Sana & Shahbaz, Muhammad, 2019. "Modeling volatility of precious metals markets by using regime-switching GARCH models," Resources Policy, Elsevier, vol. 64(C).
    9. Oscar V. De la Torre-Torres & Evaristo Galeana-Figueroa & José Álvarez-García, 2019. "A Test of Using Markov-Switching GARCH Models in Oil and Natural Gas Trading," Energies, MDPI, vol. 13(1), pages 1-24, December.
    10. Ardia, David & Hoogerheide, Lennart F., 2010. "Efficient Bayesian estimation and combination of GARCH-type models," MPRA Paper 22919, University Library of Munich, Germany.
    11. Aloui, Chaker & Hammoudeh, Shawkat & Hamida, Hela Ben, 2015. "Price discovery and regime shift behavior in the relationship between sharia stocks and sukuk: A two-state Markov switching analysis," Pacific-Basin Finance Journal, Elsevier, vol. 34(C), pages 121-135.
    12. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Effective energy commodity risk management: Econometric modeling of price volatility," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 234-250.
    13. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    14. Huang, Yirong & Luo, Yi, 2024. "Forecasting conditional volatility based on hybrid GARCH-type models with long memory, regime switching, leverage effect and heavy-tail: Further evidence from equity market," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    15. Abdessamad Ouchen, 2022. "Is the ESG portfolio less turbulent than a market benchmark portfolio?," Risk Management, Palgrave Macmillan, vol. 24(1), pages 1-33, March.
    16. Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.
    17. Aloui, Chaker & Jammazi, Rania, 2009. "The effects of crude oil shocks on stock market shifts behaviour: A regime switching approach," Energy Economics, Elsevier, vol. 31(5), pages 789-799, September.
    18. Azamat Abdymomunov & James Morley, 2011. "Time variation of CAPM betas across market volatility regimes," Applied Financial Economics, Taylor & Francis Journals, vol. 21(19), pages 1463-1478.
    19. Hayet Ben Haj Hamida & Francesco Scalera, 2019. "Threshold Mean Reversion and Regime Changes of Cryptocurrencies using SETAR-MSGARCH Models," International Journal of Academic Research in Accounting, Finance and Management Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Accounting, Finance and Management Sciences, vol. 9(3), pages 221-229, July.
    20. Massimo Guidolin, 2011. "Markov Switching Models in Empirical Finance," Advances in Econometrics, in: Missing Data Methods: Time-Series Methods and Applications, pages 1-86, Emerald Group Publishing Limited.

    More about this item

    Keywords

    Volatility; Financial Risk; Markov Switching; BIST;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • E42 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Monetary Sytsems; Standards; Regimes; Government and the Monetary System
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ahs:journl:v:6:y:2021:i:1:p:16-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ersan Ersoy (email available below). General contact details of provider: https://epfjournal.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.