IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/2818.html
   My bibliography  Save this paper

A Markov Model of Heteroskedasticity, Risk, and Learning in the Stock Market

Author

Listed:
  • Christopher M. Turner
  • Richard Startz
  • Charles R. Nelson

Abstract

Risk premia in the stock market are assumed to move with time varying risk. We present a model in which the variance of time excess return of a portfolio depends on a state variable generated by a first-order Markov process. A model in which the realization of the state is known to economic agents, but unknown to the econometrician. is estimated. The parameter estimates are found to imply that time risk premium declines as time variance of returns rises. We then extend the model to allow agents to be uncertain about time state. Agents make their decisions in period t using a prior distribution of time state based only on past realizations of the excess return through period t-1 plus knowledge of the structure of the model. These parameter estimates from this model are consistent with asset pricing theory.

Suggested Citation

  • Christopher M. Turner & Richard Startz & Charles R. Nelson, 1989. "A Markov Model of Heteroskedasticity, Risk, and Learning in the Stock Market," NBER Working Papers 2818, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:2818
    Note: ME
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w2818.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:2818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.