IDEAS home Printed from https://ideas.repec.org/a/ags/jordng/174496.html
   My bibliography  Save this article

A Comparison of Global Timber Models

Author

Listed:
  • Kim, Yoon Hyung

Abstract

This study identifies differences of global timber models in its three different versions by comparing marginal abatement cost. The forest-only model has a relatively linear marginal cost curve; the other two models show concave cost curves, indicating that the marginal cost for carbon sequestration increases faster than in the forest-only model. Such basic differences among the models may be caused by the characteristics of the CET(Constant Elasticity of Transformation) model. The differences between the forest-only model and CET model are more narrowed when CET results are converted to physical units. This study contributes to the enhancement of the understanding of GTM development and provides foundation for future studies to improve global timber modeling.

Suggested Citation

  • Kim, Yoon Hyung, 2011. "A Comparison of Global Timber Models," Journal of Rural Development/Nongchon-Gyeongje, Korea Rural Economic Institute, vol. 34(3), pages 1-13, July.
  • Handle: RePEc:ags:jordng:174496
    DOI: 10.22004/ag.econ.174496
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/174496/files/34_3_1.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.174496?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yu, Wusheng & Hertel, Thomas W. & Preckel, Paul V. & Eales, James S., 2002. "Projecting World Food Demand: A Comparison of Alternative Demand Systems," 2002 International Congress, August 28-31, 2002, Zaragoza, Spain 24877, European Association of Agricultural Economists.
    2. Tavoni, Massimo & Sohngen, Brent & Bosetti, Valentina, 2007. "Forestry and the carbon market response to stabilize climate," Energy Policy, Elsevier, vol. 35(11), pages 5346-5353, November.
    3. Thomas W. Hertel & Wallace E. Tyner & Dileep K. Birur, 2010. "The Global Impacts of Biofuel Mandates," The Energy Journal, , vol. 31(1), pages 75-100, January.
    4. Brent Sohngen & Robert Mendelsohn, 2003. "An Optimal Control Model of Forest Carbon Sequestration," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 448-457.
    5. Hertel, Thomas, 1997. "Global Trade Analysis: Modeling and applications," GTAP Books, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, number 7685, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Munier, Nathan, 2016. "“The one who controls the diamond wears the crown! The politicization of the Kimberley Process in Zimbabwe”," Resources Policy, Elsevier, vol. 47(C), pages 171-177.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michetti, Melania & Rosa, Renato, 2012. "Afforestation and timber management compliance strategies in climate policy. A computable general equilibrium analysis," Ecological Economics, Elsevier, vol. 77(C), pages 139-148.
    2. Edwin Van Der Werf & Sonja Peterson, 2009. "Modeling linkages between climate policy and land use: an overview," Agricultural Economics, International Association of Agricultural Economists, vol. 40(5), pages 507-517, September.
    3. Alice Favero & Robert Mendelsohn, 2013. "Evaluating the Global Role of Woody Biomass as a Mitigation Strategy," Working Papers 2013.37, Fondazione Eni Enrico Mattei.
    4. Taheripour, Farzad & Baumes, Harry & Tyner, Wally Taheripour, Farzad, 2019. "Impacts of the U.S. Renewable Fuel Standard on Commodity and Food Prices," Conference papers 333127, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    5. Nelson Villoria & Rachael Garrett & Florian Gollnow & Kimberly Carlson, 2022. "Leakage does not fully offset soy supply-chain efforts to reduce deforestation in Brazil," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Asbjørn Aaheim & Rajiv Chaturvedi & Anitha Sagadevan, 2011. "Integrated modelling approaches to analysis of climate change impacts on forests and forest management," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(2), pages 247-266, February.
    7. Michetti, Melania & Parrado, Ramiro, 2012. "Improving Land-use modelling within CGE to assess Forest-based Mitigation Potential and Costs," Climate Change and Sustainable Development 122862, Fondazione Eni Enrico Mattei (FEEM).
    8. Ujjayant Chakravorty & Marie‐Hélène Hubert & Michel Moreaux & Linda Nøstbakken, 2017. "Long‐Run Impact of Biofuels on Food Prices," Scandinavian Journal of Economics, Wiley Blackwell, vol. 119(3), pages 733-767, July.
    9. Ujjayant Chakravorty & Marie‐Hélène Hubert & Beyza Ural Marchand, 2019. "Food for fuel: The effect of the US biofuel mandate on poverty in India," Quantitative Economics, Econometric Society, vol. 10(3), pages 1153-1193, July.
    10. Renato Rosa & Clara Costa Duarte & Maria A. Cunha-e-Sá, 2009. "The Role of Forests as Carbon Sinks: Land-Use and Carbon Accounting," Working Papers 2009.61, Fondazione Eni Enrico Mattei.
    11. Favero, Alice & Mendelsohn, Robert & Sohngen, Brent, 2016. "Carbon Storage and Bioenergy: Using Forests for Climate Mitigation," MITP: Mitigation, Innovation and Transformation Pathways 232215, Fondazione Eni Enrico Mattei (FEEM).
    12. Grant, Jason H. & Hertel, Thomas W. & Rutherford, Thomas F., 2006. "Extending General Equilibrium to the Tariff Line: U.S. Dairy in the Doha Development Agenda," 2006 Annual meeting, July 23-26, Long Beach, CA 21409, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    13. Latta, Gregory S. & Adams, Darius M. & Bell, Kathleen P. & Kline, Jeffrey D., 2016. "Evaluating land-use and private forest management responses to a potential forest carbon offset sales program in western Oregon (USA)," Forest Policy and Economics, Elsevier, vol. 65(C), pages 1-8.
    14. Ovando, Paola & Caparrós, Alejandro, 2009. "Land use and carbon mitigation in Europe: A survey of the potentials of different alternatives," Energy Policy, Elsevier, vol. 37(3), pages 992-1003, March.
    15. Sathaye, Jayant A. & Anger, Niels, 2008. "Reducing Deforestation and Trading Emissions: Economic Implications for the post-Kyoto Carbon Market," ZEW Discussion Papers 08-016, ZEW - Leibniz Centre for European Economic Research.
    16. Ortega-Pacheco, Daniel V. & Keeler, Andrew G. & Jiang, Shiguo, 2019. "Climate change mitigation policy in Ecuador: Effects of land-use competition and transaction costs," Land Use Policy, Elsevier, vol. 81(C), pages 302-310.
    17. Banse, Martin & Rothe, Andrea & Tabeau, Andrzej & Meijl, Hans van & Woltjer, Geert, 2013. "Will improved access to capital dampen the need for more agricultural land? A CGE analysis of agricultural capital markets and world-wide biofuel policies," Working papers 155706, Factor Markets, Centre for European Policy Studies.
    18. Alejandro Caparrós & David Zilberman, 2010. "Optimal carbon sequestration path when different biological or physical sequestration," Working Papers 1018, Instituto de Políticas y Bienes Públicos (IPP), CSIC.
    19. Golub, Alla & Hertel, Thomas & Lee, Huey-Lin & Rose, Steven & Sohngen, Brent, 2009. "The opportunity cost of land use and the global potential for greenhouse gas mitigation in agriculture and forestry," Resource and Energy Economics, Elsevier, vol. 31(4), pages 299-319, November.
    20. Hertel, Thomas, 2013. "Global Applied General Equilibrium Analysis Using the Global Trade Analysis Project Framework," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 815-876, Elsevier.

    More about this item

    Keywords

    Land Economics/Use;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:jordng:174496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/kreinkr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.