IDEAS home Printed from https://ideas.repec.org/a/ags/jasfmr/161493.html
   My bibliography  Save this article

Kansas Farmers Interest and Preferences for Growing Cellulosic Bioenergy Crops

Author

Listed:
  • Fewell, Jason
  • Lynes, Melissa
  • Williams, Jeffery
  • Bergtold, Jason

Abstract

A survey was administered to determine Kansas farmers’ willingness to grow crops for biofuel. The primary purpose of the survey was to assess farmers’ willingness to produce biomass for cellulosic bioenergy in the forms of a value added crop, an annual energy crop, and a perennial energy crop under a favorable contractual arrangement, as well as to determine reasons they would or would not grow a bioenergy crop under a contract. Results show that net returns and contract length were the most important characteristics influencing farmers’ willingness to produce cellulosic bioenergy crops.

Suggested Citation

  • Fewell, Jason & Lynes, Melissa & Williams, Jeffery & Bergtold, Jason, 2013. "Kansas Farmers Interest and Preferences for Growing Cellulosic Bioenergy Crops," Journal of the ASFMRA, American Society of Farm Managers and Rural Appraisers, vol. 2013, pages 1-22, June.
  • Handle: RePEc:ags:jasfmr:161493
    DOI: 10.22004/ag.econ.161493
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/161493/files/385%20Williams.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.161493?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Torre Ugarte, Daniel de la & Walsh, Marie E. & Shapouri, Hosein & Slinsky, Stephen P., 2003. "The Economic Impacts of Bioenergy Crop Production on U.S. Crop Production," Agricultural Economic Reports 33997, United States Department of Agriculture, Economic Research Service.
    2. Marie Walsh & Daniel de la Torre Ugarte & Hosein Shapouri & Stephen Slinsky, 2003. "Bioenergy Crop Production in the United States: Potential Quantities, Land Use Changes, and Economic Impacts on the Agricultural Sector," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 24(4), pages 313-333, April.
    3. Paul Gallagher & Mark Dikeman & John Fritz & Eric Wailes & Wayne Gauthier & Hosein Shapouri, 2003. "Supply and Social Cost Estimates for Biomass from Crop Residues in the United States," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 24(4), pages 335-358, April.
    4. Larson, James A. & English, Burton C. & Hellwinckel, Chad M. & Torre Ugarte, Daniel de la & Walsh, Marie E., 2005. "A Farm-Level Evaluation of Conditions Under Which Farmers Will Supply Biomass Feedstocks for Energy Production," 2005 Annual meeting, July 24-27, Providence, RI 19161, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    5. Heid, Walter G., Jr., 1984. "Turning Great Plains Crop Residues and Other Products Into Energy," Agricultural Economic Reports 307969, United States Department of Agriculture, Economic Research Service.
    6. Gallagher, Paul W. & Dikeman, Mark & Fritz, John & Wailes, Eric & Gauthier, Wayne & Shapouri, Hosein, 2003. "Supply and Social Cost Estimates for Biomass from Crop Residues in the United States," ISU General Staff Papers 200304010800001493, Iowa State University, Department of Economics.
    7. Lajili, Kaouthar & Barry, Peter J. & Sonka, Steven T. & Mahoney, Joseph T., 1997. "Farmers' Preferences For Crop Contracts," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 22(2), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fewell, Jason E. & Bergtold, Jason S. & Williams, Jeffery R., 2016. "Farmers' willingness to contract switchgrass as a cellulosic bioenergy crop in Kansas," Energy Economics, Elsevier, vol. 55(C), pages 292-302.
    2. Burli, Pralhad & Lal, Pankaj & Wolde, Bernabas & Jose, Shibu & Bardhan, Sougata, 2021. "Perceptions about switchgrass and land allocation decisions: Evidence from a farmer survey in Missouri," Land Use Policy, Elsevier, vol. 109(C).
    3. Bergtold, Jason S. & Shanoyan, Aleksan & Fewell, Jason E. & Williams, Jeffery R., 2017. "Annual bioenergy crops for biofuels production: Farmers' contractual preferences for producing sweet sorghum," Energy, Elsevier, vol. 119(C), pages 724-731.
    4. Guang Han & Robert A. Martin, 2018. "Teaching and Learning about Biomass Energy: The Significance of Biomass Education in Schools," Sustainability, MDPI, vol. 10(4), pages 1-17, March.
    5. Lynes, Melissa K. & Bergtold, Jason S. & Williams, Jeffery R. & Fewell, Jason E., 2016. "Willingness of Kansas farm managers to produce alternative cellulosic biofuel feedstocks: An analysis of adoption and initial acreage allocation," Energy Economics, Elsevier, vol. 59(C), pages 336-348.
    6. Kassu Wamisho Hossiso & Aaron Laporte & David Ripplinger, 2017. "The Effects of Contract Mechanism Design and Risk Preferences on Biomass Supply for Ethanol Production," Agribusiness, John Wiley & Sons, Ltd., vol. 33(3), pages 339-357, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fewell, Jason E. & Bergtold, Jason S. & Williams, Jeffery R., 2011. "Farmers’ Willingness to Grow Switchgrass as a Cellulosic Bioenergy Crop: A Stated Choice Approach," 2011 Annual Meeting, June 29-July 1, 2011, Banff, Alberta,Canada 109776, Western Agricultural Economics Association.
    2. Fewell, Jason E. & Bergtold, Jason S. & Williams, Jeffery R., 2016. "Farmers' willingness to contract switchgrass as a cellulosic bioenergy crop in Kansas," Energy Economics, Elsevier, vol. 55(C), pages 292-302.
    3. Walsh, Marie E., 2005. "Non-Traditional Sources of Biomass Feedstocks," Energy from Agriculture: New Technologies, Innovative Programs and Success Stories, December 14-15, 2005, St. Louis, Missouri 7625, Farm Foundation.
    4. Moon, Jin-Young & Apland, Jeffrey & Folle, Solomon & Mulla, David, 2016. "A Watershed Level Economic Analysis of Cellulosic Biofuel Feedstock Production with Consideration of Water Quality," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 5(3).
    5. Rosburg, Alicia & Miranowski, John & Jacobs, Keri, 2013. "Cellulosic Biofuel Supply with Heterogeneous Biomass Suppliers: An Application to Switchgrass-based Ethanol," Staff General Research Papers Archive 36359, Iowa State University, Department of Economics.
    6. Lynes, Melissa K. & Bergtold, Jason S. & Williams, Jeffery R. & Fewell, Jason E., 2012. "Determining Farmers’ Willingness-To-Grow Cellulosic Biofuel Feedstocks on Agricultural Land," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124777, Agricultural and Applied Economics Association.
    7. Doering, Otto C., III, 2005. "Agricultural/Renewable Contributions to U.S. Electricity Usage," Energy from Agriculture: New Technologies, Innovative Programs and Success Stories, December 14-15, 2005, St. Louis, Missouri 7626, Farm Foundation.
    8. Lynes, Melissa K. & Bergtold, Jason S. & Williams, Jeffery R. & Fewell, Jason E., 2016. "Willingness of Kansas farm managers to produce alternative cellulosic biofuel feedstocks: An analysis of adoption and initial acreage allocation," Energy Economics, Elsevier, vol. 59(C), pages 336-348.
    9. Jacinto F. Fabiosa & John C. Beghin & Fengxia Dong & JAmani Elobeid & Simla Tokgoz & Tun-Hsiang Yu, 2010. "Land Allocation Effects of the Global Ethanol Surge: Predictions from the International FAPRI Model," Land Economics, University of Wisconsin Press, vol. 86(4), pages 687-706.
    10. Maung, Thein A. & McCarl, Bruce A., 2013. "Economic factors influencing potential use of cellulosic crop residues for electricity generation," Energy, Elsevier, vol. 56(C), pages 81-91.
    11. Paul Gallagher & Guenter Schamel & Hosein Shapouri & Heather Brubaker, 2006. "The international competitiveness of the U.S. corn-ethanol industry: A comparison with sugar-ethanol processing in Brazil," Agribusiness, John Wiley & Sons, Ltd., vol. 22(1), pages 109-134.
    12. White, Eric M. & Latta, Greg & Alig, Ralph J. & Skog, Kenneth E. & Adams, Darius M., 2013. "Biomass production from the U.S. forest and agriculture sectors in support of a renewable electricity standard," Energy Policy, Elsevier, vol. 58(C), pages 64-74.
    13. Mobini, Mahdi & Sowlati, Taraneh & Sokhansanj, Shahab, 2011. "Forest biomass supply logistics for a power plant using the discrete-event simulation approach," Applied Energy, Elsevier, vol. 88(4), pages 1241-1250, April.
    14. Chunzeng Wang & Jason Johnston & David Vail & Jared Dickinson & David Putnam, 2015. "High-Precision Land-Cover-Land-Use GIS Mapping and Land Availability and Suitability Analysis for Grass Biomass Production in the Aroostook River Valley, Maine, USA," Land, MDPI, vol. 4(1), pages 1-24, March.
    15. Dumortier, Jerome, 2014. "Impact of different bioenergy crop yield estimates on the cellulosic ethanol feedstock mix," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 171168, Agricultural and Applied Economics Association.
    16. McCarty, Tanner & Sesmero, Juan, 2014. "Uncertainty, Irreversibility, and Investment in Second-Generation Biofuels," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 179201, Agricultural and Applied Economics Association.
    17. Bai, Yun & Ouyang, Yanfeng & Pang, Jong-Shi, 2016. "Enhanced models and improved solution for competitive biofuel supply chain design under land use constraints," European Journal of Operational Research, Elsevier, vol. 249(1), pages 281-297.
    18. Qiu, Huanguang & Huang, Jikun & Yang, Jun & Rozelle, Scott & Zhang, Yuhua & Zhang, Yahui & Zhang, Yanli, 2010. "Bioethanol development in China and the potential impacts on its agricultural economy," Applied Energy, Elsevier, vol. 87(1), pages 76-83, January.
    19. Gan, Jianbang, 2007. "Supply of biomass, bioenergy, and carbon mitigation: Method and application," Energy Policy, Elsevier, vol. 35(12), pages 6003-6009, December.
    20. Ian J. Bonner & Kara G. Cafferty & David J. Muth & Mark D. Tomer & David E. James & Sarah A. Porter & Douglas L. Karlen, 2014. "Opportunities for Energy Crop Production Based on Subfield Scale Distribution of Profitability," Energies, MDPI, vol. 7(10), pages 1-18, October.

    More about this item

    Keywords

    Resource /Energy Economics and Policy;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:jasfmr:161493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/asfmrea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.