IDEAS home Printed from https://ideas.repec.org/a/ags/gjagec/319805.html
   My bibliography  Save this article

The Measurement of Time Varying Technical Efficiency and Productivity Change in Polish Crop Farms

Author

Listed:
  • Marzec, Jerzy
  • Pisulewski, Andrzej

Abstract

The main aim of this study is to measure the technical efficiency and decompose total factor productivity (TFP) growth of Polish crop farms. The novelty of our contribution is threefold. First of all, our work contributes to research on agricultural performance of Central and Eastern European countries in the post-European Union accession period. Secondly, compared to previous studies, our study expands them by decomposition of total factor productivity growth for a specific sector based on a very extensive dataset, thus providing a more indepth analysis of factors driving productivity growth. Thirdly, we have thoroughly explored the same data set by several different models, showing consequences of choosing a particular model. The empirical analysis is based on a balanced panel of farms, from 2004 to 2011, taken from the Farm Accountancy Data Network. Findings show that the average technical efficiency was only 63%. The elasticity of production was highest with respect to materials and lowest with respect to area. The capital elasticity was statistically non-significant. We point out that this sector is characterized by increasing returns to scale, with estimates ranging from 1.05 to 1.3 for the majority of observations. Furthermore, the results show that TFP was slightly decreasing (on average by 0.067% per annum) over the entire period.

Suggested Citation

  • Marzec, Jerzy & Pisulewski, Andrzej, 2019. "The Measurement of Time Varying Technical Efficiency and Productivity Change in Polish Crop Farms," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 68(1), March.
  • Handle: RePEc:ags:gjagec:319805
    DOI: 10.22004/ag.econ.319805
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/319805/files/2_Pisulewski.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.319805?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. van den Broeck, Julien & Koop, Gary & Osiewalski, Jacek & Steel, Mark F. J., 1994. "Stochastic frontier models : A Bayesian perspective," Journal of Econometrics, Elsevier, vol. 61(2), pages 273-303, April.
    2. Hugo Fuentes & Emili Grifell-Tatjé & Sergio Perelman, 2001. "A Parametric Distance Function Approach for Malmquist Productivity Index Estimation," Journal of Productivity Analysis, Springer, vol. 15(2), pages 79-94, March.
    3. Christian Ritter & Léopold Simar, 1997. "Pitfalls of Normal-Gamma Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 8(2), pages 167-182, May.
    4. A. Tonini, 2012. "A Bayesian stochastic frontier: an application to agricultural productivity growth in European countries," Economic Change and Restructuring, Springer, vol. 45(4), pages 247-269, November.
    5. Peter B. R. Hazell, 2005. "Is there a future for small farms?," Agricultural Economics, International Association of Agricultural Economists, vol. 32(s1), pages 93-101, January.
    6. Christensen, Laurits R & Jorgenson, Dale W & Lau, Lawrence J, 1973. "Transcendental Logarithmic Production Frontiers," The Review of Economics and Statistics, MIT Press, vol. 55(1), pages 28-45, February.
    7. Lajos Baráth & Imre Fertő & Štefan Bojnec, 2018. "Are farms in less favored areas less efficient?," Agricultural Economics, International Association of Agricultural Economists, vol. 49(1), pages 3-12, January.
    8. Lajos Baráth & Imre Fertő, 2017. "Productivity and Convergence in European Agriculture," Journal of Agricultural Economics, Wiley Blackwell, vol. 68(1), pages 228-248, February.
    9. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
    10. Bernhard Brümmer & Thomas Glauben & Geert Thijssen, 2002. "Decomposition of Productivity Growth Using Distance Functions: The Case of Dairy Farms in Three European Countries," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(3), pages 628-644.
    11. Kellermann, Magnus & Salhofer, Klaus & Wintzer, Wolfgang & Stockinger, Christian, 2011. "Der Zusammenhang zwischen technischer Effizienz und wirtschaftlichem Erfolg: eine Analyse für bayerische Milchviehbetriebe," Journal of International Agricultural Trade and Development, Journal of International Agricultural Trade and Development, vol. 60(4).
    12. Pavel Ciaian & Jan Fałkowski & D’Artis Kancs, 2012. "Productivity and credit constraints: A firm-level propensity score evidence for agricultural farms in central and east European countries," Acta Oeconomica, Akadémiai Kiadó, Hungary, vol. 62(4), pages 459-487, December.
    13. Timothy J. Coelli & D.S. Prasada Rao & Christopher J. O’Donnell & George E. Battese, 2005. "An Introduction to Efficiency and Productivity Analysis," Springer Books, Springer, edition 0, number 978-0-387-25895-9, December.
    14. Nishimizu, Mieko & Page, John M, Jr, 1982. "Total Factor Productivity Growth, Technological Progress and Technical Efficiency Change: Dimensions of Productivity Change in Yugoslavia, 1965-78," Economic Journal, Royal Economic Society, vol. 92(368), pages 920-936, December.
    15. Kellermann, Magnus & Salhofer, Klaus & Wintzer, Wolfgang & Stockinger, Christian, 2011. "Der Zusammenhang zwischen technischer Effizienz und wirtschaftlichem Erfolg: eine Analyse für bayerische Milchviehbetriebe," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 60(04), pages 1-13, November.
    16. V. Ball & Jean-Christophe Bureau & Jean-Pierre Butault & Richard Nehring, 2001. "Levels of Farm Sector Productivity: An International Comparison," Journal of Productivity Analysis, Springer, vol. 15(1), pages 5-29, January.
    17. George Battese & Sumiter Broca, 1997. "Functional Forms of Stochastic Frontier Production Functions and Models for Technical Inefficiency Effects: A Comparative Study for Wheat Farmers in Pakistan," Journal of Productivity Analysis, Springer, vol. 8(4), pages 395-414, November.
    18. Kumbhakar, Subal C., 1990. "Production frontiers, panel data, and time-varying technical inefficiency," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 201-211.
    19. Gorton, Matthew & Davidova, Sophia, 2004. "Farm productivity and efficiency in the CEE applicant countries: a synthesis of results," Agricultural Economics, Blackwell, vol. 30(1), pages 1-16, January.
    20. Gary Koop & Jacek Osiewalski & Mark F. J. Steel, 1999. "The Components of Output Growth: A Stochastic Frontier Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(4), pages 455-487, November.
    21. Xueqin Zhu & Alfons Oude Lansink, 2010. "Impact of CAP Subsidies on Technical Efficiency of Crop Farms in Germany, the Netherlands and Sweden," Journal of Agricultural Economics, Wiley Blackwell, vol. 61(3), pages 545-564, September.
    22. Jerzy Marzec & Andrzej Pisulewski, 2017. "The Effect of CAP Subsidies on the Technical Efficiency of Polish Dairy Farms," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 9(3), pages 243-273, September.
    23. Latruffe, Laure & Fogarasi, József & Desjeux, Yann, 2012. "Efficiency, productivity and technology comparison for farms in Central and Western Europe: The case of field crop and dairy farming in Hungary and France," Economic Systems, Elsevier, vol. 36(2), pages 264-278.
    24. Luis Orea, 2002. "Parametric Decomposition of a Generalized Malmquist Productivity Index," Journal of Productivity Analysis, Springer, vol. 18(1), pages 5-22, July.
    25. Axel Tonini & Roel Jongeneel, 2006. "Is the Collapse of Agricultural Output in the CEECs a Good Indicator of Economic Performance? A Total Factor Productivity Analysis," Eastern European Economics, Taylor & Francis Journals, vol. 44(4), pages 32-59, August.
    26. V. Eldon Ball & Jean‐Pierre Butault & Carlos San Juan & Ricardo Mora, 2010. "Productivity and international competitiveness of agriculture in the European Union and the United States," Agricultural Economics, International Association of Agricultural Economists, vol. 41(6), pages 611-627, November.
    27. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    28. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    29. Laure Latruffe & Kelvin Balcombe & Sophia Davidova & Katarzyna Zawalinska, 2004. "Determinants of technical efficiency of crop and livestock farms in Poland," Applied Economics, Taylor & Francis Journals, vol. 36(12), pages 1255-1263.
    30. Rafael Cuesta, 2000. "A Production Model With Firm-Specific Temporal Variation in Technical Inefficiency: With Application to Spanish Dairy Farms," Journal of Productivity Analysis, Springer, vol. 13(2), pages 139-158, March.
    31. Parmeter, Christopher F. & Kumbhakar, Subal C., 2014. "Efficiency Analysis: A Primer on Recent Advances," Foundations and Trends(R) in Econometrics, now publishers, vol. 7(3-4), pages 191-385, December.
    32. Johan Swinnen & Liesbet Vranken, 2010. "Reforms and agricultural productivity in Central and Eastern Europe and the Former Soviet Republics: 1989–2005," Journal of Productivity Analysis, Springer, vol. 33(3), pages 241-258, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jerzy Marzec & Andrzej Pisulewski, 2021. "Measurement of technical efficiency in the case of heterogeneity of technologies used between firms - Based on evidence from Polish crop farms," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 67(4), pages 152-161.
    2. Jerzy Marzec & Andrzej Pisulewski & Artur Prędki, 2019. "Efektywność techniczna i produktywność polskich gospodarstw rolnych specjalizujących się w uprawach polowych," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 2, pages 95-125.
    3. Jerzy Marzec & Andrzej Pisulewski, 2020. "Pomiar efektywności zróżnicowanych technologicznie gospodarstw rolnych w Unii Europejskiej," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 3, pages 111-137.
    4. Kryszak, Łukasz & Herzfeld, Thomas, 2021. "One or many European models of agriculture? How heterogeneity influences income creation among farms in the European Union," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 67(11), pages 445-456.
    5. von Hobe, Cord-Friedrich & Michels, Marius & Musshoff, Oliver, 2021. "Technical efficiency and productivity change in German large-scale arable farming," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 70(01), January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jerzy Marzec & Andrzej Pisulewski & Artur Prędki, 2019. "Efektywność techniczna i produktywność polskich gospodarstw rolnych specjalizujących się w uprawach polowych," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 2, pages 95-125.
    2. Jerzy Marzec & Andrzej Pisulewski, 2017. "The Effect of CAP Subsidies on the Technical Efficiency of Polish Dairy Farms," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 9(3), pages 243-273, September.
    3. A. Tonini, 2012. "A Bayesian stochastic frontier: an application to agricultural productivity growth in European countries," Economic Change and Restructuring, Springer, vol. 45(4), pages 247-269, November.
    4. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    5. Skevas, Ioannis & Emvalomatis, Grigorios & Brümmer, Bernhard, 2018. "Productivity growth measurement and decomposition under a dynamic inefficiency specification: The case of German dairy farms," European Journal of Operational Research, Elsevier, vol. 271(1), pages 250-261.
    6. Jerzy Marzec & Andrzej Pisulewski, 2020. "Pomiar efektywności zróżnicowanych technologicznie gospodarstw rolnych w Unii Europejskiej," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 3, pages 111-137.
    7. O'Donnell, Christopher J. & Coelli, Timothy J., 2005. "A Bayesian approach to imposing curvature on distance functions," Journal of Econometrics, Elsevier, vol. 126(2), pages 493-523, June.
    8. Makieła, Kamil & Marzec, Jerzy & Pisulewski, Andrzej, 2016. "Productivity Change Analysis of Polish Dairy Farms After Poland’s Accession to the EU – An Output Growth Decomposition Approach," MPRA Paper 80295, University Library of Munich, Germany.
    9. Pontus Mattsson & Jonas Månsson & William H. Greene, 2020. "TFP change and its components for Swedish manufacturing firms during the 2008–2009 financial crisis," Journal of Productivity Analysis, Springer, vol. 53(1), pages 79-93, February.
    10. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    11. Jerzy Marzec & Andrzej Pisulewski, 2021. "Measurement of technical efficiency in the case of heterogeneity of technologies used between firms - Based on evidence from Polish crop farms," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 67(4), pages 152-161.
    12. Boris Bravo-Ureta & Daniel Solís & Víctor Moreira López & José Maripani & Abdourahmane Thiam & Teodoro Rivas, 2007. "Technical efficiency in farming: a meta-regression analysis," Journal of Productivity Analysis, Springer, vol. 27(1), pages 57-72, February.
    13. Phatima MAMARDASHVILI & Dierk SCHMID, 2013. "Performance of Swiss dairy farms under provision of public goods," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 59(7), pages 300-314.
    14. Pontus Mattsson & Jonas Mansson & William H. Greene, 2018. "TFP Change and its Components for Swedish Manufacturing Firms During the 2008-2009 Financial Crisis," Working Papers 18-27, New York University, Leonard N. Stern School of Business, Department of Economics.
    15. Kamil Makie{l}a & B{l}a.zej Mazur, 2020. "Stochastic Frontier Analysis with Generalized Errors: inference, model comparison and averaging," Papers 2003.07150, arXiv.org, revised Oct 2020.
    16. Ali M. Oumer & Amin Mugera & Michael Burton & Atakelty Hailu, 2022. "Technical efficiency and firm heterogeneity in stochastic frontier models: application to smallholder maize farms in Ethiopia," Journal of Productivity Analysis, Springer, vol. 57(2), pages 213-241, April.
    17. Veronika Fenyves & Tibor Tarnóczi & Zoltán Bács & Dóra Kerezsi & Péter Bajnai & Mihály Szoboszlai, 2022. "Financial efficiency analysis of Hungarian agriculture, fisheries and forestry sector," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 68(11), pages 413-426.
    18. Griffin, J. E. & Steel, M. F. J., 2004. "Semiparametric Bayesian inference for stochastic frontier models," Journal of Econometrics, Elsevier, vol. 123(1), pages 121-152, November.
    19. Henderson, Heath & Follett, Lendie, 2022. "Targeting social safety net programs on human capabilities," World Development, Elsevier, vol. 151(C).
    20. Nicola Galluzzo, 2021. "Estimation of the impact of CAP subsidies as environmental variables on Romanian farms," Economia agro-alimentare, FrancoAngeli Editore, vol. 23(3), pages 1-24.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:gjagec:319805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/iahubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.