IDEAS home Printed from https://ideas.repec.org/a/aen/journl/ej43-2-schmalensee.html
   My bibliography  Save this article

Competitive Energy Storage and the Duck Curve

Author

Listed:
  • Richard Schmalensee

Abstract

Power systems with high penetrations of solar generation need to replace solar output when it falls rapidly in the late afternoonthe duck curve problem. Storage is a carbon-free solution to this problem. This essay considers investment in generation and storage to minimize expected cost in a Boiteux-Turvey-style model of an electric power system with alternating daytime time periods, with solar generation, and nighttime periods, without it. In the most interesting cases, if energy market prices are uncapped, all expected cost minima are long-run competitive equilibria, and the long-run equilibrium value of storage capacity minimizes expected system cost conditional on generation capacities.

Suggested Citation

  • Richard Schmalensee, 2022. "Competitive Energy Storage and the Duck Curve," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
  • Handle: RePEc:aen:journl:ej43-2-schmalensee
    as

    Download full text from publisher

    File URL: http://www.iaee.org/en/publications/ejarticle.aspx?id=3800
    Download Restriction: Access to full text is restricted to IAEE members and subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Joachim Geske and Richard Green, 2020. "Optimal Storage, Investment and Management under Uncertainty: It is Costly to Avoid Outages!," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-28.
    2. Gerard Llobet and Jorge Padilla, 2018. "Conventional Power Plants in Liberalized Electricity Markets with Renewable Entry," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    3. Joskow, Paul L., 2008. "Capacity payments in imperfect electricity markets: Need and design," Utilities Policy, Elsevier, vol. 16(3), pages 159-170, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moshe Kelner & Zinoviy Landsman & Udi E. Makov, 2022. "Probabilistic Peak Demand Estimation Using Members of the Clayton Generalized Gamma Copula Family," Energies, MDPI, vol. 15(16), pages 1-15, August.
    2. Isogai, Hirotaka & Nakagaki, Takao, 2024. "Power-to-heat amine-based post-combustion CO2 capture system with solvent storage utilizing fluctuating electricity prices," Applied Energy, Elsevier, vol. 368(C).
    3. Yukta Mehta & Rui Xu & Benjamin Lim & Jane Wu & Jerry Gao, 2023. "A Review for Green Energy Machine Learning and AI Services," Energies, MDPI, vol. 16(15), pages 1-30, July.
    4. Alberto J. Lamadrid & Hao Lu & Timothy D. Mount, 2024. "A simple way to integrate distributed storage into a wholesale electricity market," Journal of Regulatory Economics, Springer, vol. 65(1), pages 27-63, June.
    5. Chaves, J. P. & Cossent, R. & Gómez San Román, T. & Linares, P. & Rivier, M., 2023. "An assessment of the European electricity market reform options and a pragmatic proposal," Cambridge Working Papers in Economics 2325, Faculty of Economics, University of Cambridge.
    6. J.P. Chaves & R. Cossent & T. Gómez San Román & P. Linares & M. Rivier, 2023. "An assessment of the European electricity market reform options and a pragmatic proposal," Working Papers EPRG2305, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    7. Zhang, Tuo & Tang, Maogang, 2024. "Solar surge and cost shifts: Heterogenous effects of redistribution in the electricity bills in Japan," Energy Economics, Elsevier, vol. 137(C).
    8. Mays, Jacob, 2024. "Sequential pricing of electricity," Energy Economics, Elsevier, vol. 137(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    2. Pär Holmberg & Robert A. Ritz, 2021. "Optimal Capacity Mechanisms for Competitive Electricity Markets," The Energy Journal, , vol. 42(1_suppl), pages 1-34, June.
    3. Holmberg, P. & Ritz, R., 2019. "Capacity mechanisms and the technology mix in competitive electricity markets," Cambridge Working Papers in Economics 1960, Faculty of Economics, University of Cambridge.
    4. Gorman, Will & Montañés, Cristina Crespo & Mills, Andrew & Kim, James Hyungkwan & Millstein, Dev & Wiser, Ryan, 2022. "Are coupled renewable-battery power plants more valuable than independently sited installations?," Energy Economics, Elsevier, vol. 107(C).
    5. Cristian Junge & Dharik Mallapragada & Richard Schmalensee, 2022. "Energy Storage Investment and Operation in Efficient Electric Power Systems," The Energy Journal, , vol. 43(6), pages 1-24, November.
    6. Fabra, Natalia, 2023. "Reforming European electricity markets: Lessons from the energy crisis," Energy Economics, Elsevier, vol. 126(C).
    7. Andor, Mark A. & Frondel, Manuel & Schmidt, Christoph M. & Simora, Michael & Sommer, Stephan, 2015. "Klima- und Energiepolitik in Deutschland: Dissens und Konsens," RWI Materialien 91, RWI - Leibniz-Institut für Wirtschaftsforschung.
    8. Jean-Michel Glachant & Arthur Henriot, 2013. "Melting-pots and salad bowls: the current debate on electricity market design for RES integration," Working Papers EPRG 1329, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    9. Simshauser, Paul, 2024. "On static vs. dynamic line ratings in renewable energy zones," Energy Economics, Elsevier, vol. 129(C).
    10. Harbord, David & Pagnozzi, Marco, 2014. "Britain's electricity capacity auctions: lessons from Colombia and New England," MPRA Paper 56224, University Library of Munich, Germany.
    11. Richard J. Green, 2008. "Electricity Wholesale Markets: Designs Now and in a Low-carbon Future," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 95-124.
    12. Bialek, Sylwia & Ünel, Burçin, 2022. "Efficiency in wholesale electricity markets: On the role of externalities and subsidies," Energy Economics, Elsevier, vol. 109(C).
    13. BOUCKAERT, Jan & VAN MOER, Geert, 2014. "Horizontal subcontracting and intermittent power generation," Working Papers 2014031, University of Antwerp, Faculty of Business and Economics.
    14. Antweiler, Werner, 2021. "Microeconomic models of electricity storage: Price Forecasting, arbitrage limits, curtailment insurance, and transmission line utilization," Energy Economics, Elsevier, vol. 101(C).
    15. Elberg, Christina, 2014. "Cross-Border Effects of Capacity Mechanisms in Electricity Markets," EWI Working Papers 2014-11, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    16. Growitsch, Christian & Just, Lisa & Pedell, Burkhard, 2014. "Risk Assessment of Investments in Energy-only and Capacity Markets," Die Unternehmung - Swiss Journal of Business Research and Practice, Nomos Verlagsgesellschaft mbH & Co. KG, vol. 68(3), pages 181-188.
    17. David M. Newbery & David M. Reiner & Robert A. Ritz, 2019. "The Political Economy of a Carbon Price Floor for Power Generation," The Energy Journal, , vol. 40(1), pages 1-24, January.
    18. Fabra, Natalia, 2021. "The energy transition: An industrial economics perspective," International Journal of Industrial Organization, Elsevier, vol. 79(C).
    19. Kim, Hyunsook & Kim, Sung-Soo, 2012. "The resource adequacy scheme in the Korean electricity market," Energy Policy, Elsevier, vol. 47(C), pages 133-144.
    20. Saguan, Marcelo & Meeus, Leonardo, 2014. "Impact of the regulatory framework for transmission investments on the cost of renewable energy in the EU," Energy Economics, Elsevier, vol. 43(C), pages 185-194.

    More about this item

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aen:journl:ej43-2-schmalensee. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Williams (email available below). General contact details of provider: https://edirc.repec.org/data/iaeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.