IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v76y2020i4d10.1007_s10640-020-00467-4.html
   My bibliography  Save this article

Real-Time Estimation of the Short-Run Impact of COVID-19 on Economic Activity Using Electricity Market Data

Author

Listed:
  • Carlo Fezzi

    (University of Trento
    University of Exeter Business School)

  • Valeria Fanghella

    (University of Trento)

Abstract

In response to the COVID-19 emergency, many countries have introduced a series of social-distancing measures including lockdowns and businesses’ shutdowns, in an attempt to curb the spread of the infection. Accordingly, the pandemic has been generating unprecedented disruption on practically every aspect of society. This paper demonstrates that high-frequency electricity market data can be used to estimate the causal, short-run impacts of COVID-19 on the economy, providing information that is essential for shaping future lockdown policy. Unlike official statistics, which are published with a delay of a few months, our approach permits almost real-time monitoring of the economic impact of the containment policies and the financial stimuli introduced to address the crisis. We illustrate our methodology using daily data for the Italian day-ahead power market. We estimate that the 3 weeks of most severe lockdown reduced the corresponding Italian Gross Domestic Product (GDP) by roughly 30%. Such negative impacts are now progressively declining but, at the end of June 2020, GDP is still about 8.5% lower than it would have been without the outbreak.

Suggested Citation

  • Carlo Fezzi & Valeria Fanghella, 2020. "Real-Time Estimation of the Short-Run Impact of COVID-19 on Economic Activity Using Electricity Market Data," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 885-900, August.
  • Handle: RePEc:kap:enreec:v:76:y:2020:i:4:d:10.1007_s10640-020-00467-4
    DOI: 10.1007/s10640-020-00467-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10640-020-00467-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10640-020-00467-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Sheng-Tung & Kuo, Hsiao-I & Chen, Chi-Chung, 2007. "The relationship between GDP and electricity consumption in 10 Asian countries," Energy Policy, Elsevier, vol. 35(4), pages 2611-2621, April.
    2. Kees Jan Van Garderen & Chandra Shah, 2002. "Exact interpretation of dummy variables in semilogarithmic equations," Econometrics Journal, Royal Economic Society, vol. 5(1), pages 149-159, June.
    3. Giuseppe Cavaliere & Luca Fanelli & Attilio Gardini, 2008. "International dynamic risk sharing," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 1-16.
    4. Backus, David K & Kehoe, Patrick J, 1992. "International Evidence of the Historical Properties of Business Cycles," American Economic Review, American Economic Association, vol. 82(4), pages 864-888, September.
    5. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    6. Taylor, James W. & de Menezes, Lilian M. & McSharry, Patrick E., 2006. "A comparison of univariate methods for forecasting electricity demand up to a day ahead," International Journal of Forecasting, Elsevier, vol. 22(1), pages 1-16.
    7. Malinauskaite, J. & Jouhara, H. & Ahmad, L. & Milani, M. & Montorsi, L. & Venturelli, M., 2019. "Energy efficiency in industry: EU and national policies in Italy and the UK," Energy, Elsevier, vol. 172(C), pages 255-269.
    8. Zeileis, Achim, 2004. "Econometric Computing with HC and HAC Covariance Matrix Estimators," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i10).
    9. J. Vernon Henderson & Adam Storeygard & David N. Weil, 2012. "Measuring Economic Growth from Outer Space," American Economic Review, American Economic Association, vol. 102(2), pages 994-1028, April.
    10. Jaqueson K. Galimberti, 2020. "Forecasting GDP Growth from Outer Space," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(4), pages 697-722, August.
    11. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    12. Halvorsen, Robert & Palmquist, Raymond, 1980. "The Interpretation of Dummy Variables in Semilogarithmic Equations," American Economic Review, American Economic Association, vol. 70(3), pages 474-475, June.
    13. Carlo Fezzi & Derek Bunn, 2010. "Structural Analysis of Electricity Demand and Supply Interactions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(6), pages 827-856, December.
    14. Carlo Fezzi and Luca Mosetti, 2020. "Size Matters: Estimation Sample Length and Electricity Price Forecasting Accuracy," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 231-254.
    15. Takashi Hattori & Hoseok Nam, 2020. "Essence of Multilateral Energy Technology Collaboration:A Case Study of International Energy Agency (IEA) Technology Collaboration Programmes (TCPs)," KIER Working Papers 1023, Kyoto University, Institute of Economic Research.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlo Fezzi & Valeria Fanghella, 2020. "Real-time estimation of the short-run impact of COVID-19 on economic activity using electricity market data," DEM Working Papers 2020/8, Department of Economics and Management.
    2. Carlo Fezzi & Valeria Fanghella, 2020. "Real-time estimation of the short-run impact of COVID-19 on economic activity using electricity market data," Papers 2007.03477, arXiv.org.
    3. Fezzi, Carlo & Fanghella, Valeria, 2021. "Tracking GDP in real-time using electricity market data: Insights from the first wave of COVID-19 across Europe," European Economic Review, Elsevier, vol. 139(C).
    4. Jacek Artur Strojny & Michał Stanisław Chwastek & Elżbieta Badach & Sławomir Jacek Lisek & Piotr Kacorzyk, 2022. "Impacts of COVID-19 on Energy Expenditures of Local Self-Government Units in Poland," Energies, MDPI, vol. 15(4), pages 1-25, February.
    5. Bashiri Behmiri, Niaz & Fezzi, Carlo & Ravazzolo, Francesco, 2023. "Incorporating air temperature into mid-term electricity load forecasting models using time-series regressions and neural networks," Energy, Elsevier, vol. 278(C).
    6. Beyer, Robert C.M. & Franco-Bedoya, Sebastian & Galdo, Virgilio, 2021. "Examining the economic impact of COVID-19 in India through daily electricity consumption and nighttime light intensity," World Development, Elsevier, vol. 140(C).
    7. Timo Dimitriadis & iaochun Liu & Julie Schnaitmann, 2023. "Encompassing Tests for Value at Risk and Expected Shortfall Multistep Forecasts Based on Inference on the Boundary," Journal of Financial Econometrics, Oxford University Press, vol. 21(2), pages 412-444.
    8. Raviv, Eran & Bouwman, Kees E. & van Dijk, Dick, 2015. "Forecasting day-ahead electricity prices: Utilizing hourly prices," Energy Economics, Elsevier, vol. 50(C), pages 227-239.
    9. Ball, Laurence & Carvalho, Carlos & Evans, Christopher & Antonio Ricci, Luca, 2024. "Weighted Median Inflation Around the World: A Measure of Core Inflation," Journal of International Money and Finance, Elsevier, vol. 142(C).
    10. Borice Augustin Ngounou & Honoré Tekam Oumbe & Bruno Emmanuel Ongo Nkoa & Edmond Noubissi Domguia, 2024. "Inclusive growth in the face of increasing urbanization: What experience for African countries?," Review of Development Economics, Wiley Blackwell, vol. 28(1), pages 34-70, February.
    11. Carlo Fezzi & Luca Mosetti, 2018. "Size matters: Estimation sample length and electricity price forecasting accuracy," DEM Working Papers 2018/10, Department of Economics and Management.
    12. Smith, Michael Stanley & Shively, Thomas S., 2018. "Econometric modeling of regional electricity spot prices in the Australian market," Energy Economics, Elsevier, vol. 74(C), pages 886-903.
    13. Malte Knüppel & Fabian Krüger, 2022. "Forecast uncertainty, disagreement, and the linear pool," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 23-41, January.
    14. Edward Nelson, 2012. "The correlation between money and output in the United Kingdom: resolution of a puzzle," Finance and Economics Discussion Series 2012-29, Board of Governors of the Federal Reserve System (U.S.).
    15. Haseeb Ahmed & Benjamin W. Cowan, 2019. "Mobile Money and Healthcare Use: Evidence from East Africa," NBER Working Papers 25669, National Bureau of Economic Research, Inc.
    16. Krüger, Fabian & Nolte, Ingmar, 2016. "Disagreement versus uncertainty: Evidence from distribution forecasts," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 172-186.
    17. Markus Behn & Rainer Haselmann & Vikrant Vig, 2022. "The Limits of Model‐Based Regulation," Journal of Finance, American Finance Association, vol. 77(3), pages 1635-1684, June.
    18. Blackburn, McKinley L., 2007. "Estimating wage differentials without logarithms," Labour Economics, Elsevier, vol. 14(1), pages 73-98, January.
    19. Jean-Sauveur Ay & Jean-Marc Brayer & Jean Cavailhès & Pierre Curmi & Mohamed Hilal & Marjorie Ubertosi, 2012. "La valeur des attributs naturels des terres agricoles de Côte-d'Or," INRA UMR CESAER Working Papers 2012/1, INRA UMR CESAER, Centre d'’Economie et Sociologie appliquées à l'’Agriculture et aux Espaces Ruraux.
    20. Luca Benati, 2005. "U.K. Monetary Regimes and Macroeconomic Stylised Facts," Computing in Economics and Finance 2005 107, Society for Computational Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:76:y:2020:i:4:d:10.1007_s10640-020-00467-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.