IDEAS home Printed from https://ideas.repec.org/a/aen/journl/1996v17-01-a01.html
   My bibliography  Save this article

Decomposition of SO2, NO1 and CO2 Emissions from Energy Use of Major Economic Sectors in Taiwan

Author

Listed:
  • Sue J. Lin
  • Tzu C. Chang

Abstract

In this paper we use the Divisia index approach to decompose emission changes of SO2, NOx and CO2 from major economic sectors in Taiwan during 1980 to 1992. The study highlights the interrelationships between energy use and environmental quality, and provides insights for policy making. The emission changes are decomposed into five components-pollution coefficient, fuel mix, energy intensity, economic growth and industrial structure. Of all components analyzed, economic growth had the largest positive effect on emission changes for Taiwan's major economic sectors. Emissions of SO2 in industry and other sectors showed a decreasing trend due to fuel quality improvements and pollution control. However, NOx and CO2 emissions increased sharply in all sectors. Comparisons were also made with Germany, Japan and USA. This study hay shown that improvement in energy efficiency, pollution control and fuel substitution are major options to reduce SO2, NOx and CO2 emissions.

Suggested Citation

  • Sue J. Lin & Tzu C. Chang, 1996. "Decomposition of SO2, NO1 and CO2 Emissions from Energy Use of Major Economic Sectors in Taiwan," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 1-17.
  • Handle: RePEc:aen:journl:1996v17-01-a01
    as

    Download full text from publisher

    File URL: http://www.iaee.org/en/publications/ejarticle.aspx?id=1214
    Download Restriction: Access to full text is restricted to IAEE members and subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ang, B. W. & Pandiyan, G., 1997. "Decomposition of energy-induced CO2 emissions in manufacturing," Energy Economics, Elsevier, vol. 19(3), pages 363-374, July.
    2. B.W. Ang, 1997. "Decomposition of Aggregate Energy Intensity of Industry with Application to China, Korea and Taiwan," Energy & Environment, , vol. 8(1), pages 1-11, March.
    3. Ang, B. W., 1999. "Is the energy intensity a less useful indicator than the carbon factor in the study of climate change?," Energy Policy, Elsevier, vol. 27(15), pages 943-946, December.
    4. Matthew A. Cole & Robert J.R. Elliott & Kenichi Shimamoto, 2005. "A Note on Trends in European Industrial Pollution Intensities: A Divisia Index Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 61-74.
    5. Pasurka, Carl Jr., 2006. "Decomposing electric power plant emissions within a joint production framework," Energy Economics, Elsevier, vol. 28(1), pages 26-43, January.
    6. Henrik Hammar & Åsa Löfgren, 2001. "The Determinants of Sulfur Emissions from Oil Consumption in Swedish Manufacturing Industry, 1976-1995," The Energy Journal, , vol. 22(2), pages 107-126, April.
    7. Manel Daldoul & Ahlem Dakhlaoui, 2018. "Using the LMDI Decomposition Approach to Analyze the Influencing Factors of Carbon Emissions in Tunisian Transportation Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 22-28.
    8. Åsa Löfgren & Adrian Muller, 2010. "Swedish CO 2 Emissions 1993–2006: An Application of Decomposition Analysis and Some Methodological Insights," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(2), pages 221-239, October.
    9. Lu, I.J. & Lin, Sue J. & Lewis, Charles, 2007. "Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea," Energy Policy, Elsevier, vol. 35(6), pages 3226-3235, June.
    10. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    11. Lin, Sue J. & Lu, I.J. & Lewis, Charles, 2006. "Identifying key factors and strategies for reducing industrial CO2 emissions from a non-Kyoto protocol member's (Taiwan) perspective," Energy Policy, Elsevier, vol. 34(13), pages 1499-1507, September.
    12. Di Stefano, Julian, 2000. "Energy efficiency and the environment: the potential for energy efficient lighting to save energy and reduce carbon dioxide emissions at Melbourne University, Australia," Energy, Elsevier, vol. 25(9), pages 823-839.
    13. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    14. Peter Olabisi Oluseyi & Tobiloba Emmanuel Somefun & Olubayo Moses Babatunde & Tolulope Olusegun Akinbulire & Oluleke O. Babayomi & Samuel A. Isaac & Damilola Elizabeth Babatunde, 2020. "Evaluation of Energy-efficiency in Lighting Systems for Public Buildings," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 435-439.
    15. Nag, Barnali & Parikh, Jyoti, 2000. "Indicators of carbon emission intensity from commercial energy use in India," Energy Economics, Elsevier, vol. 22(4), pages 441-461, August.
    16. Laurent Viguier, 1999. "Emissions of SO2, NOx, and CO2, in Transition Economies: Emission Inventories and Divisia Index Analysis," The Energy Journal, , vol. 20(2), pages 59-87, April.
    17. Nag, Barnali & Parikh, Jyoti K., 2005. "Carbon emission coefficient of power consumption in India: baseline determination from the demand side," Energy Policy, Elsevier, vol. 33(6), pages 777-786, April.
    18. Abu Bakar, Nur Najihah & Hassan, Mohammad Yusri & Abdullah, Hayati & Rahman, Hasimah Abdul & Abdullah, Md Pauzi & Hussin, Faridah & Bandi, Masilah, 2015. "Energy efficiency index as an indicator for measuring building energy performance: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 1-11.
    19. Binay Kumar Ray & B.Sudhakara Reddy, 2007. "Decomposition of Energy Consumption and Energy Intensity in Indian Manufacturing Industries," Energy Working Papers 22327, East Asian Bureau of Economic Research.
    20. Donglan, Zha & Dequn, Zhou & Peng, Zhou, 2010. "Driving forces of residential CO2 emissions in urban and rural China: An index decomposition analysis," Energy Policy, Elsevier, vol. 38(7), pages 3377-3383, July.
    21. Kenichi Shimamoto, 2017. "Decomposition analysis of the pollution intensities in the case of the United Kingdom," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1316553-131, January.
    22. Mukhopadhyay, Kakali & Forssell, Osmo, 2005. "An empirical investigation of air pollution from fossil fuel combustion and its impact on health in India during 1973-1974 to 1996-1997," Ecological Economics, Elsevier, vol. 55(2), pages 235-250, November.
    23. Lim, Hea-Jin & Yoo, Seung-Hoon & Kwak, Seung-Jun, 2009. "Industrial CO2 emissions from energy use in Korea: A structural decomposition analysis," Energy Policy, Elsevier, vol. 37(2), pages 686-698, February.
    24. Paul, Shyamal & Bhattacharya, Rabindra Nath, 2004. "CO2 emission from energy use in India: a decomposition analysis," Energy Policy, Elsevier, vol. 32(5), pages 585-593, March.
    25. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.

    More about this item

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aen:journl:1996v17-01-a01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Williams (email available below). General contact details of provider: https://edirc.repec.org/data/iaeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.