IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v26y2005i3p61-73.html
   My bibliography  Save this article

A Note on Trends in European Industrial Pollution Intensities: A Divisia Index Approach

Author

Listed:
  • Matthew A. Cole
  • Robert J.R. Elliott
  • Kenichi Shimamoto

Abstract

This paper attempts to identify whether declining industrial pollution intensities in many European countries are a result of reductions in sectoral emissions intensities (i.e. the effects of regulations and technology) or changes to the product mix (e.g. the decline of heavy industries). This distinction is important since reductions in pollution that are a result of changes to the product mix may simply reflect a transfer ofpollutionfrom one country to another, rather than a net reduction. We attempt to resolve this issue by applying the divisia decomposition technique to a new dataset of industry-specific emissions intensities for three common air pollutants, for four European countries. Our results generally indicate the dominance of the sectoral intensity effect although, for the UK in particular, evidence of an increasingly clean product mix is found.

Suggested Citation

  • Matthew A. Cole & Robert J.R. Elliott & Kenichi Shimamoto, 2005. "A Note on Trends in European Industrial Pollution Intensities: A Divisia Index Approach," The Energy Journal, , vol. 26(3), pages 61-73, July.
  • Handle: RePEc:sae:enejou:v:26:y:2005:i:3:p:61-73
    DOI: 10.5547/ISSN0195-6574-EJ-Vol26-No3-3
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/ISSN0195-6574-EJ-Vol26-No3-3
    Download Restriction: no

    File URL: https://libkey.io/10.5547/ISSN0195-6574-EJ-Vol26-No3-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Choi, Ki-Hong & Ang, B. W., 2003. "Decomposition of aggregate energy intensity changes in two measures: ratio and difference," Energy Economics, Elsevier, vol. 25(6), pages 615-624, November.
    2. Brian R. Copeland & M. Scott Taylor, 2004. "Trade, Growth, and the Environment," Journal of Economic Literature, American Economic Association, vol. 42(1), pages 7-71, March.
    3. Sue J. Lin & Tzu C. Chang, 1996. "Decomposition of SO2, NO1 and CO2 Emissions from Energy Use of Major Economic Sectors in Taiwan," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 1-17.
    4. Paul, Shyamal & Bhattacharya, Rabindra Nath, 2004. "CO2 emission from energy use in India: a decomposition analysis," Energy Policy, Elsevier, vol. 32(5), pages 585-593, March.
    5. J. W. Sun, 1999. "Decomposition of Aggregate CO2 Emissions in the OECD: 1960-1995," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 147-155.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Åsa Löfgren & Adrian Muller, 2010. "Swedish CO 2 Emissions 1993–2006: An Application of Decomposition Analysis and Some Methodological Insights," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(2), pages 221-239, October.
    2. Madanmohan Ghosh & Deming Luo & Muhammad Shahid Siddiqui & Thomas Rutherford & Yunfa Zhu, 2020. "The Drivers of Greenhouse Gas Emissions Intensity Improvements in Major Economies: Analysis of Trends 1995–2009," Foreign Trade Review, , vol. 55(3), pages 277-297, August.
    3. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    4. Matthew A. Cole & Andrea Lucchesi, 2014. "Economic growth and the environment," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 16, pages 252-266, Edward Elgar Publishing.
    5. Kenichi Shimamoto, 2017. "Decomposition analysis of the pollution intensities in the case of the United Kingdom," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1316553-131, January.
    6. Ang, B.W. & Liu, Na, 2007. "Negative-value problems of the logarithmic mean Divisia index decomposition approach," Energy Policy, Elsevier, vol. 35(1), pages 739-742, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Åsa Löfgren & Adrian Muller, 2010. "Swedish CO 2 Emissions 1993–2006: An Application of Decomposition Analysis and Some Methodological Insights," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(2), pages 221-239, October.
    2. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    3. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
    4. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    5. Suvajit Banerjee, 2019. "Addressing the Drivers of Carbon Emissions Embodied in Indian Exports: An Index Decomposition Analysis," Foreign Trade Review, , vol. 54(4), pages 300-333, November.
    6. Binay Kumar Ray & B.Sudhakara Reddy, 2007. "Decomposition of Energy Consumption and Energy Intensity in Indian Manufacturing Industries," Energy Working Papers 22327, East Asian Bureau of Economic Research.
    7. Kenichi Shimamoto, 2017. "Decomposition analysis of the pollution intensities in the case of the United Kingdom," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1316553-131, January.
    8. Manel Daldoul & Ahlem Dakhlaoui, 2018. "Using the LMDI Decomposition Approach to Analyze the Influencing Factors of Carbon Emissions in Tunisian Transportation Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 22-28.
    9. Paul, Shyamal & Bhattacharya, Rabindra Nath, 2004. "CO2 emission from energy use in India: a decomposition analysis," Energy Policy, Elsevier, vol. 32(5), pages 585-593, March.
    10. Lozano, Sebastián & Gutiérrez, Ester, 2008. "Non-parametric frontier approach to modelling the relationships among population, GDP, energy consumption and CO2 emissions," Ecological Economics, Elsevier, vol. 66(4), pages 687-699, July.
    11. Lim, Hea-Jin & Yoo, Seung-Hoon & Kwak, Seung-Jun, 2009. "Industrial CO2 emissions from energy use in Korea: A structural decomposition analysis," Energy Policy, Elsevier, vol. 37(2), pages 686-698, February.
    12. Edmond Noubissi & Boker Poumie & Hilaire Nkengfack, 2021. "Effect of environmental policies on exports from sub‐Saharan African countries," African Development Review, African Development Bank, vol. 33(4), pages 688-702, December.
    13. Löschel, Andreas & Pothen, Frank & Schymura, Michael, 2015. "Peeling the onion: Analyzing aggregate, national and sectoral energy intensity in the European Union," Energy Economics, Elsevier, vol. 52(S1), pages 63-75.
    14. Antoci, Angelo & Galdi, Giulio & Russu, Paolo, 2022. "Environmental degradation and comparative advantage reversal," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    15. Lu, I.J. & Lin, Sue J. & Lewis, Charles, 2007. "Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea," Energy Policy, Elsevier, vol. 35(6), pages 3226-3235, June.
    16. Coxhead, Ian A. & Jayasuriya, Sisira, 2003. "Trade, Liberalization, Resource Degradation and Industrial Pollution in Developing Countries: An Integrated Analysis," Staff Papers 12691, University of Wisconsin-Madison, Department of Agricultural and Applied Economics.
    17. Sebri, Maamar, 2009. "La Zone Méditerranéenne Face à la Pollution de L’air : Une Investigation Econométrique [The Mediterranean Zone in front of Air pollution: an Econometric Investigation]," MPRA Paper 32382, University Library of Munich, Germany.
    18. Muhammad Shahbaz & Syed Jawad Hussain Shahzad & Mantu Kumar Mahalik & Perry Sadorsky, 2018. "How strong is the causal relationship between globalization and energy consumption in developed economies? A country-specific time-series and panel analysis," Applied Economics, Taylor & Francis Journals, vol. 50(13), pages 1479-1494, March.
    19. Yang, Yuting, 2022. "Electricity interconnection with intermittent renewables," Journal of Environmental Economics and Management, Elsevier, vol. 113(C).
    20. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.

    More about this item

    Keywords

    Air pollution; Divisia Index; Europe decomposition; SO2; CO2; NOx;
    All these keywords.

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:26:y:2005:i:3:p:61-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.