IDEAS home Printed from https://ideas.repec.org/a/aea/apandp/v111y2021p49-54.html
   My bibliography  Save this article

Measuring Racial Discrimination in Algorithms

Author

Listed:
  • David Arnold
  • Will Dobbie
  • Peter Hull

Abstract

Algorithmic decision-making can lead to discrimination against legally protected groups, but measuring such discrimination is often hampered by a fundamental selection challenge. We develop new quasi-experimental tools to overcome this challenge and measure algorithmic discrimination in pretrial bail decisions. We show that the selection challenge reduces to the challenge of measuring four moments, which can be estimated by extrapolating quasi-experimental variation across as-good-as-randomly assigned decision-makers. Estimates from New York City show that both a sophisticated machine learning algorithm and a simpler regression model discriminate against Black defendants even though defendant race and ethnicity are not included in the training data.

Suggested Citation

  • David Arnold & Will Dobbie & Peter Hull, 2021. "Measuring Racial Discrimination in Algorithms," AEA Papers and Proceedings, American Economic Association, vol. 111, pages 49-54, May.
  • Handle: RePEc:aea:apandp:v:111:y:2021:p:49-54
    DOI: 10.1257/pandp.20211080
    as

    Download full text from publisher

    File URL: https://www.aeaweb.org/doi/10.1257/pandp.20211080
    Download Restriction: no

    File URL: https://doi.org/10.3886/E131362V1
    Download Restriction: no

    File URL: https://www.aeaweb.org/doi/10.1257/pandp.20211080.appx
    Download Restriction: no

    File URL: https://www.aeaweb.org/doi/10.1257/pandp.20211080.ds
    Download Restriction: Access to full text is restricted to AEA members and institutional subscribers.

    File URL: https://libkey.io/10.1257/pandp.20211080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. David Arnold & Will Dobbie & Peter Hull, 2022. "Measuring Racial Discrimination in Bail Decisions," American Economic Review, American Economic Association, vol. 112(9), pages 2992-3038, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. E. Jason Baron & Joseph J. Doyle Jr. & Natalia Emanuel & Peter Hull & Joseph Ryan, 2024. "Unwarranted Disparity in High-Stakes Decisions: Race Measurement and Policy Responses," NBER Chapters, in: Race, Ethnicity, and Economic Statistics for the 21st Century, National Bureau of Economic Research, Inc.
    2. Eli Ben-Michael & D. James Greiner & Melody Huang & Kosuke Imai & Zhichao Jiang & Sooahn Shin, 2024. "Does AI help humans make better decisions? A statistical evaluation framework for experimental and observational studies," Papers 2403.12108, arXiv.org, revised Oct 2024.
    3. Elliott Ash & Ruben Durante & Maria Grebenshchikova & Carlo Schwarz, 2022. "Visual Representation and Stereotypes in News Media," CESifo Working Paper Series 9686, CESifo.
    4. Annie Liang & Jay Lu & Xiaosheng Mu & Kyohei Okumura, 2021. "Algorithm Design: A Fairness-Accuracy Frontier," Papers 2112.09975, arXiv.org, revised May 2024.
    5. Marina Chugunova & Wolfgang J. Luhan, 2022. "Ruled by robots: Preference for algorithmic decision makers and perceptions of their choices," Working Papers in Economics & Finance 2022-03, University of Portsmouth, Portsmouth Business School, Economics and Finance Subject Group.
    6. Eyting, Markus, 2022. "Why do we discriminate? The role of motivated reasoning," SAFE Working Paper Series 356, Leibniz Institute for Financial Research SAFE.
    7. Joshua Grossman & Julian Nyarko & Sharad Goel, 2023. "Racial bias as a multi‐stage, multi‐actor problem: An analysis of pretrial detention," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 20(1), pages 86-133, March.
    8. Markus Eyting, 2022. "Why do we Discriminate? The Role of Motivated Reasoning," Working Papers 2208, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    9. Brendan O'Flaherty & Rajiv Sethi & Morgan Williams, 2024. "The nature, detection, and avoidance of harmful discrimination in criminal justice," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 43(1), pages 289-320, January.
    10. Ashesh Rambachan, 2022. "Identifying Prediction Mistakes in Observational Data," NBER Chapters, in: Economics of Artificial Intelligence, National Bureau of Economic Research, Inc.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jens Ludwig & Sendhil Mullainathan, 2021. "Fragile Algorithms and Fallible Decision-Makers: Lessons from the Justice System," Journal of Economic Perspectives, American Economic Association, vol. 35(4), pages 71-96, Fall.
    2. Ivan A Canay & Magne Mogstad & Jack Mount, 2024. "On the Use of Outcome Tests for Detecting Bias in Decision Making," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(4), pages 2135-2167.
    3. Mogstad, Magne & Torgovitsky, Alexander & Walters, Christopher R., 2024. "Policy evaluation with multiple instrumental variables," Journal of Econometrics, Elsevier, vol. 243(1).
    4. Yulia Evsyukova & Felix Rusche & Wladislaw Mill, 2023. "LinkedOut? A Field Experiment on Discrimination in Job Network Formation," CRC TR 224 Discussion Paper Series crctr224_2023_482v2, University of Bonn and University of Mannheim, Germany, revised Oct 2024.
    5. Nicolás Grau & Damián Vergara, "undated". "A Simple Test for Prejudice in Decision Processes: The Prediction-Based Outcome Test," Working Papers wp493, University of Chile, Department of Economics.
    6. Bharti, Nitin Kumar & Roy, Sutanuka, 2023. "The early origins of judicial stringency in bail decisions: Evidence from early childhood exposure to Hindu-Muslim riots in India," Journal of Public Economics, Elsevier, vol. 221(C).
    7. Enzo Brox & Riccardo Di Francesco, 2024. "The Cost of Coming Out," Papers 2403.03649, arXiv.org, revised Jun 2024.
    8. Paul Goldsmith-Pinkham & Peter Hull & Michal Kolesár, 2024. "Contamination Bias in Linear Regressions," American Economic Review, American Economic Association, vol. 114(12), pages 4015-4051, December.
    9. Jason Abaluck & Leila Agha & David C. Chan Jr & Daniel Singer & Diana Zhu, 2020. "Fixing Misallocation with Guidelines: Awareness vs. Adherence," NBER Working Papers 27467, National Bureau of Economic Research, Inc.
    10. Patrick Kline & Christopher Walters, 2021. "Reasonable Doubt: Experimental Detection of Job‐Level Employment Discrimination," Econometrica, Econometric Society, vol. 89(2), pages 765-792, March.
    11. Claudia Williamson Kramer, 2023. "Individualism and racial tolerance," Public Choice, Springer, vol. 197(3), pages 347-370, December.
    12. Rahul Deb & Ludovic Renou, 2022. "Which wage distributions are consistent with statistical discrimination?," Working Papers tecipa-736, University of Toronto, Department of Economics.
    13. Benjamin Feigenberg & Conrad Miller, 2020. "Racial Disparities in Motor Vehicle Searches Cannot Be Justified by Efficiency," NBER Working Papers 27761, National Bureau of Economic Research, Inc.
    14. Elliott Ash & Claudia Marangon, 2024. "Judging disparities: Recidivism risk, image motives and in-group bias on Wisconsin criminal courts," Discussion Papers 2024-03, Nottingham Interdisciplinary Centre for Economic and Political Research (NICEP).
    15. Maximilian Kasy, 2023. "Algorithmic bias and racial inequality: A critical review," Economics Series Working Papers 1015, University of Oxford, Department of Economics.
    16. Rehbeck, John, 2023. "Revealed Bayesian expected utility with limited data," Journal of Economic Behavior & Organization, Elsevier, vol. 207(C), pages 81-95.
    17. Eli Ben-Michael & D. James Greiner & Melody Huang & Kosuke Imai & Zhichao Jiang & Sooahn Shin, 2024. "Does AI help humans make better decisions? A statistical evaluation framework for experimental and observational studies," Papers 2403.12108, arXiv.org, revised Oct 2024.
    18. Hanemaaijer, Kyra & Ketel, Nadine & Marie, Olivier, 2024. "Minority Salience and Criminal Justice Decisions," IZA Discussion Papers 17396, Institute of Labor Economics (IZA).
    19. Ashesh Rambachan, 2022. "Identifying Prediction Mistakes in Observational Data," NBER Chapters, in: Economics of Artificial Intelligence, National Bureau of Economic Research, Inc.
    20. Joshua Grossman & Julian Nyarko & Sharad Goel, 2023. "Racial bias as a multi‐stage, multi‐actor problem: An analysis of pretrial detention," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 20(1), pages 86-133, March.

    More about this item

    JEL classification:

    • J15 - Labor and Demographic Economics - - Demographic Economics - - - Economics of Minorities, Races, Indigenous Peoples, and Immigrants; Non-labor Discrimination
    • K40 - Law and Economics - - Legal Procedure, the Legal System, and Illegal Behavior - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aea:apandp:v:111:y:2021:p:49-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael P. Albert (email available below). General contact details of provider: https://edirc.repec.org/data/aeaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.