Insight of Artificial Intelligence Application in Healthcare
Author
Abstract
Suggested Citation
DOI: 10.18483/ijSci.2157
Download full text from publisher
References listed on IDEAS
- David Thesmar & David Sraer & Lisa Pinheiro & Nick Dadson & Razvan Veliche & Paul Greenberg, 2019. "Combining the Power of Artificial Intelligence with the Richness of Healthcare Claims Data: Opportunities and Challenges," PharmacoEconomics, Springer, vol. 37(6), pages 745-752, June.
- Eugene Jeong & Namgi Park & Young Choi & Rae Woong Park & Dukyong Yoon, 2018. "Machine learning model combining features from algorithms with different analytical methodologies to detect laboratory-event-related adverse drug reaction signals," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-15, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- David Thesmar & David Sraer & Lisa Pinheiro & Nick Dadson & Razvan Veliche & Paul Greenberg, 2019. "Combining the Power of Artificial Intelligence with the Richness of Healthcare Claims Data: Opportunities and Challenges," PharmacoEconomics, Springer, vol. 37(6), pages 745-752, June.
- Fatma Khamis Al Badi & Khawla Ali Alhosani & Fauzia Jabeen & Agata Stachowicz-Stanusch & Nazia Shehzad & Wolfgang AMANN, 2022. "Challenges of AI Adoption in the UAE Healthcare," Vision, , vol. 26(2), pages 193-207, June.
- Araz Zirar, 2023. "Can artificial intelligence’s limitations drive innovative work behaviour?," Review of Managerial Science, Springer, vol. 17(6), pages 2005-2034, August.
- Zirar, Araz & Ali, Syed Imran & Islam, Nazrul, 2023. "Worker and workplace Artificial Intelligence (AI) coexistence: Emerging themes and research agenda," Technovation, Elsevier, vol. 124(C).
- Zahlan, Ahmed & Ranjan, Ravi Prakash & Hayes, David, 2023. "Artificial intelligence innovation in healthcare: Literature review, exploratory analysis, and future research," Technology in Society, Elsevier, vol. 74(C).
- Mathias Bärtl & Simone Krummaker, 2020. "Prediction of Claims in Export Credit Finance: A Comparison of Four Machine Learning Techniques," Risks, MDPI, vol. 8(1), pages 1-27, March.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adm:journl:v:8:y:2019:i:8:p:50-55. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Staff ijSciences (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.