IDEAS home Printed from https://ideas.repec.org/a/abc/gakuep/48-4-5.html
   My bibliography  Save this article

Marketing Analysis for Social Media: Detecting Unexpected Consumer Behavior Analysis Triggered by Topical Issues

Author

Listed:
  • Takako Hashimoto
  • Tetsuji Kuboyama
  • Yukari Shirota

Abstract

ブログや口コミ掲示版といったソーシャルメディアから製品の評判やニーズを分析する研究が盛んである。既存の研究では,特定の製品や機能に注目し,「好き」,「嫌い」,「高い」,「便利」といった典型的な評価語の発生頻度やPositive/Negative の度合いを定量化することで消費者の関心やそれに伴う消費行動の解析が行われている。しかしながら,消費者のニーズや関心は特定の製品や機能に対して直接的に示されるだけではなく,種々の時事問題を反映して間接的に示されることもあり,結果として意外な消費行動を引き起こす場合がある。時事問題をトリガーとした想定外の消費行動パターンを発見できれば,新しいマーケティングリサーチ手法となると我々は考える。そこ本論文では,口コミ掲示版の書き込みから時事問題と製品間の相関を抽出し,想定外の消費行動を発見する手法を提案する。提案手法は,まず時事問題と各種製品間の時系列相関をDynamic Time Warping 法により算出し,時事問題との間に想定外の相関関係をもつような製品候補を抽出する。さらにその製品候補の口コミ掲示版において発生する語の共起関係をベースに消費者の書き込みをネットワーク構造化し,話題構造の推移を時系列で可視化する。時系列グラフ構造の動的な振舞いを分析することで,時事問題をきっかけとした想定外の消費行動を抽出していく。我々の手法により,時事問題に対して一見無関係に思われる製品に対する消費者の想定外の消費行動を分析することが可能となる。

Suggested Citation

  • Takako Hashimoto & Tetsuji Kuboyama & Yukari Shirota, 2012. "Marketing Analysis for Social Media: Detecting Unexpected Consumer Behavior Analysis Triggered by Topical Issues," Gakushuin Economic Papers, Gakushuin University, Faculty of Economics, vol. 48(4), pages 285-302.
  • Handle: RePEc:abc:gakuep:48-4-5
    as

    Download full text from publisher

    File URL: http://www.gakushuin.ac.jp/univ/eco/gakkai/pdf_files/keizai_ronsyuu/contents/contents2006/4804/4804hashimoto/4804hashimoto.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Otranto, Edoardo, 2010. "Identifying financial time series with similar dynamic conditional correlation," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bauwens, Luc & Otranto, Edoardo, 2020. "Nonlinearities and regimes in conditional correlations with different dynamics," Journal of Econometrics, Elsevier, vol. 217(2), pages 496-522.
    2. Geert Dhaene & Piet Sercu & Jianbin Wu, 2022. "Volatility spillovers: A sparse multivariate GARCH approach with an application to commodity markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(5), pages 868-887, May.
    3. Aielli, Gian Piero & Caporin, Massimiliano, 2014. "Variance clustering improved dynamic conditional correlation MGARCH estimators," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 556-576.
    4. Afonso, António & Gomes, Pedro & Taamouti, Abderrahim, 2014. "Sovereign credit ratings, market volatility, and financial gains," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 20-33.
    5. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    6. Edoardo Otranto & Romana Gargano, 2015. "Financial clustering in presence of dominant markets," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(3), pages 315-339, September.
    7. Edoardo Otranto & Massimo Mucciardi, 2019. "Clustering space-time series: FSTAR as a flexible STAR approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 175-199, March.
    8. Lúcio, Francisco & Caiado, Jorge, 2022. "COVID-19 and Stock Market Volatility: A Clustering Approach for S&P 500 Industry Indices," Finance Research Letters, Elsevier, vol. 49(C).
    9. Hafner, Christian M. & Reznikova, Olga, 2012. "On the estimation of dynamic conditional correlation models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3533-3545.
    10. E. Otranto, 2024. "A Vector Multiplicative Error Model with Spillover Effects and Co-movements," Working Paper CRENoS 202404, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    11. Audrino, Francesco, 2014. "Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 43-60.
    12. E. Otranto, 2011. "Classification of Volatility in Presence of Changes in Model Parameters," Working Paper CRENoS 201113, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    13. Di Iorio, Francesca & Triacca, Umberto, 2013. "Testing for Granger non-causality using the autoregressive metric," Economic Modelling, Elsevier, vol. 33(C), pages 120-125.
    14. B. Lafuente-Rego & P. D’Urso & J. A. Vilar, 2020. "Robust fuzzy clustering based on quantile autocovariances," Statistical Papers, Springer, vol. 61(6), pages 2393-2448, December.
    15. M. Mucciardi & E. Otranto, 2016. "A Flexible Specification of Space–Time AutoRegressive Models," Working Paper CRENoS 201608, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    16. Gu, Huaying & Liu, Zhixue & Weng, Yingliang, 2017. "Time-varying correlations in global real estate markets: A multivariate GARCH with spatial effects approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 460-472.
    17. Jorge Caiado & Nuno Crato & Pilar Poncela, 2020. "A fragmented-periodogram approach for clustering big data time series," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(1), pages 117-146, March.
    18. Francesca Di Iorio & Umberto Triacca, 2014. "Testing for A Set of Linear Restrictions in VARMA Models Using Autoregressive Metric: An Application to Granger Causality Test," Econometrics, MDPI, vol. 2(4), pages 1-14, December.
    19. E. Otranto & M. Mucciardi, 2017. "Clustering Space-Time Series: A Flexible STAR Approach," Working Paper CRENoS 201707, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    20. Domenico Piccolo, 2012. "Discussion of “An analysis of global warming in the Alpine region based of nonlinear nonstationary time series models” by F. Battaglia and M. K. Protopapas," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(3), pages 363-369, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:abc:gakuep:48-4-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dimitry Rtischev (email available below). General contact details of provider: https://edirc.repec.org/data/fegakjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.