My bibliography
Save this item
Using Entropic Tilting to Combine BVAR Forecasts with External Nowcasts
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bańbura, Marta & Leiva-León, Danilo & Menz, Jan-Oliver, 2021.
"Do inflation expectations improve model-based inflation forecasts?,"
Discussion Papers
48/2021, Deutsche Bundesbank.
- Bańbura, Marta & Leiva-Leon, Danilo & Menz, Jan-Oliver, 2021. "Do inflation expectations improve model-based inflation forecasts?," Working Paper Series 2604, European Central Bank.
- Marta Bañbura & Danilo Leiva-León & Jan-Oliver Menz, 2021. "Do inflation expectations improve model-based inflation Forecasts?," Working Papers 2138, Banco de España.
- Konstantinos Metaxoglou & Davide Pettenuzzo & Aaron Smith, 2019.
"Option-Implied Equity Premium Predictions via Entropic Tilting,"
Journal of Financial Econometrics, Oxford University Press, vol. 17(4), pages 559-586.
- Davide Pettenuzzo & Konstantinos Metaxoglou & Aaron Smith, 2016. "Option-Implied Equity Premium Predictions via Entropic TiltinG," Working Papers 99, Brandeis University, Department of Economics and International Business School.
- Davide Pettenuzzo & Konstantinos Metaxoglou & Aaron Smith, 2016. "Option-Implied Equity Premium Predictions via Entropic TiltinG," Working Papers 99R, Brandeis University, Department of Economics and International Business School, revised Aug 2016.
- Chris McDonald & Craig Thamotheram & Shaun P. Vahey & Elizabeth C. Wakerly, 2016.
"Assessing the economic value of probabilistic forecasts in the presence of an inflation target,"
Reserve Bank of New Zealand Discussion Paper Series
DP2016/10, Reserve Bank of New Zealand.
- Christopher McDonald & Craig Thamotheram & Shaun P. Vahey & Elizabeth C. Wakerly, 2016. "Assessing the economic value of probabilistic forecasts in the presence of an inflation target," CAMA Working Papers 2016-40, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Gary Koop & Stuart McIntyre & James Mitchell, 2018.
"UK regional nowcasting using a mixed frequency vector autoregressive model,"
Working Papers
1805, University of Strathclyde Business School, Department of Economics.
- Gary Koop & Stuart McIntyre & James Mitchell, 2018. "UK Regional Nowcasting using a Mixed Frequency Vector Autoregressive Model," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-07, Economic Statistics Centre of Excellence (ESCoE).
- Tallman, Ellis W. & Zaman, Saeed, 2020.
"Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy,"
International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
- Ellis W. Tallman & Saeed Zaman, 2018. "Combining Survey Long-Run Forecasts and Nowcasts with BVAR Forecasts Using Relative Entropy," Working Papers (Old Series) 1809, Federal Reserve Bank of Cleveland.
- Hauber, Philipp, 2021. "How useful is external information from professional forecasters? Conditional forecasts in large factor models," EconStor Preprints 251469, ZBW - Leibniz Information Centre for Economics.
- Knotek, Edward S. & Zaman, Saeed, 2019.
"Financial nowcasts and their usefulness in macroeconomic forecasting,"
International Journal of Forecasting, Elsevier, vol. 35(4), pages 1708-1724.
- Edward S. Knotek & Saeed Zaman, 2017. "Financial Nowcasts and Their Usefulness in Macroeconomic Forecasting," Working Papers (Old Series) 1702, Federal Reserve Bank of Cleveland.
- Kenourgios, Dimitris & Papadamou, Stephanos & Dimitriou, Dimitrios & Zopounidis, Constantin, 2020.
"Modelling the dynamics of unconventional monetary policies’ impact on professionals’ forecasts,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 64(C).
- Dimitris Kenourgios & Stephanos Papadamou & Dimitrios Dimitriou & Constantin Zopounidis, 2020. "Modelling the dynamics of unconventional monetary policies’ impact on professionals’ forecasts," Post-Print hal-02880071, HAL.
- Barbara Rossi, 2019.
"Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them,"
Working Papers
1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Ganics, Gergely & Odendahl, Florens, 2021.
"Bayesian VAR forecasts, survey information, and structural change in the euro area,"
International Journal of Forecasting, Elsevier, vol. 37(2), pages 971-999.
- Gergely Ganics & Florens Odendahl, 2019. "Bayesian VAR forecasts, survey information and structural change in the euro area," Working Papers 1948, Banco de España.
- Gergely Ganics & Florens Odendahl, 2019. "Bayesian VAR Forecasts, Survey Information and Structural Change in the Euro Area," Working papers 733, Banque de France.
- Richard K. Crump & Stefano Eusepi & Domenico Giannone & Eric Qian & Argia M. Sbordone, 2021. "A Large Bayesian VAR of the United States Economy," Staff Reports 976, Federal Reserve Bank of New York.
- Todd E. Clark & Gergely Ganics & Elmar Mertens, 2022.
"Constructing Fan Charts from the Ragged Edge of SPF Forecasts,"
Working Papers
22-36, Federal Reserve Bank of Cleveland.
- Todd E. Clark & Gergely Ganics & Elmar Mertens, 2024. "Constructing fan charts from the ragged edge of SPF forecasts," Working Papers 2429, Banco de España.
- Clark, Todd E. & Ganics, Gergely & Mertens, Elmar, 2024. "Constructing fan charts from the ragged edge of SPF forecasts," Discussion Papers 38/2024, Deutsche Bundesbank.
- Todd E. Clark & Gergely Ganics & Elmar Mertens, 2024. "Constructing Fan Charts from the Ragged Edge of SPF Forecasts," Working Papers 22-36R, Federal Reserve Bank of Cleveland.
- Taeyoung Doh, 2017. "Trend and Uncertainty in the Long-Term Real Interest Rate: Bayesian Exponential Tilting with Survey Data," Research Working Paper RWP 17-8, Federal Reserve Bank of Kansas City.
- Malte Knüppel & Fabian Krüger, 2022.
"Forecast uncertainty, disagreement, and the linear pool,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 23-41, January.
- Knüppel, Malte & Krüger, Fabian, 2017. "Forecast Uncertainty, Disagreement, and Linear Pools of Density Forecasts," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168294, Verein für Socialpolitik / German Economic Association.
- Knüppel, Malte & Krüger, Fabian, 2019. "Forecast uncertainty, disagreement, and the linear pool," Discussion Papers 28/2019, Deutsche Bundesbank.
- repec:wrk:wrkemf:33 is not listed on IDEAS
- Knotek, Edward S. & Zaman, Saeed, 2023.
"Real-time density nowcasts of US inflation: A model combination approach,"
International Journal of Forecasting, Elsevier, vol. 39(4), pages 1736-1760.
- Edward Knotek & Saeed Zaman, 2020. "Real-time density nowcasts of US inflation: a model-combination approach," Working Papers 2015, University of Strathclyde Business School, Department of Economics.
- Edward S. Knotek & Saeed Zaman, 2020. "Real-Time Density Nowcasts of US Inflation: A Model-Combination Approach," Working Papers 20-31, Federal Reserve Bank of Cleveland.
- Zhiyuan Pan & Jun Zhang & Yudong Wang & Juan Huang, 2024. "Modeling and forecasting stock return volatility using the HARGARCH model with VIX information," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(8), pages 1383-1403, August.
- Todd E. Clark & Gergely Ganics & Elmar Mertens, 2022.
"What is the Predictive Value of SPF Point and Density Forecasts?,"
Working Papers
22-37, Federal Reserve Bank of Cleveland.
- Ganics, Gergely & Mertens, Elmar & Clark, Todd E., 2023. "What Is the Predictive Value of SPF Point and Density Forecasts?," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277622, Verein für Socialpolitik / German Economic Association.
- Milan Szabo, 2024. "Disciplining growth‐at‐risk models with survey of professional forecasters and Bayesian quantile regression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1975-1981, September.
- Maryam Movahedifar & Hossein Hassani & Masoud Yarmohammadi & Mahdi Kalantari & Rangan Gupta, 2021. "A robust approach for outlier imputation: Singular Spectrum Decomposition," Working Papers 202164, University of Pretoria, Department of Economics.
- Fabian Krüger, 2017. "Survey-based forecast distributions for Euro Area growth and inflation: ensembles versus histograms," Empirical Economics, Springer, vol. 53(1), pages 235-246, August.
- Pablo Guerróon‐Quintana & Molin Zhong, 2023.
"Macroeconomic forecasting in times of crises,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 295-320, April.
- Pablo Guerrón-Quintana & Molin Zhong, 2017. "Macroeconomic Forecasting in Times of Crises," Finance and Economics Discussion Series 2017-018, Board of Governors of the Federal Reserve System (U.S.).
- Galvão, Ana Beatriz & Garratt, Anthony & Mitchell, James, 2021. "Does judgment improve macroeconomic density forecasts?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1247-1260.
- Cem Cakmakli & Hamza Demircan, 2020. "Using Survey Information for Improving the Density Nowcasting of US GDP with a Focus on Predictive Performance during Covid-19 Pandemic," Koç University-TUSIAD Economic Research Forum Working Papers 2016, Koc University-TUSIAD Economic Research Forum.
- Nadiia Shapovalenko, 2021. "A BVAR Model for Forecasting Ukrainian Inflation," IHEID Working Papers 05-2021, Economics Section, The Graduate Institute of International Studies.
- Montes-Galdón, Carlos & Paredes, Joan & Wolf, Elias, 2022.
"Conditional density forecasting: a tempered importance sampling approach,"
Working Paper Series
2754, European Central Bank.
- Wolf, Elias & Montes-Galdón, Carlos & Paredes, Joan, 2024. "Conditional density forecasting: a tempered importance sampling approach," VfS Annual Conference 2024 (Berlin): Upcoming Labor Market Challenges 302442, Verein für Socialpolitik / German Economic Association.
- Yuliya Rychalovska & Sergey Slobodyan & Rafael Wouters, 2023. "Professional Survey Forecasts and Expectations in DSGE Models," CERGE-EI Working Papers wp766, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
- Bjarni G. Einarsson, 2024. "Online Monitoring of Policy Optimality," Economics wp95, Department of Economics, Central bank of Iceland.
- Baumeister, Christiane, 2021.
"Measuring Market Expectations,"
CEPR Discussion Papers
16520, C.E.P.R. Discussion Papers.
- Christiane Baumeister, 2021. "Measuring Market Expectations," Working Papers 202163, University of Pretoria, Department of Economics.
- Christiane Baumeister, 2021. "Measuring Market Expectations," CESifo Working Paper Series 9305, CESifo.
- Christiane Baumeister, 2021. "Measuring Market Expectations," NBER Working Papers 29232, National Bureau of Economic Research, Inc.
- repec:wrk:wrkemf:09 is not listed on IDEAS
- Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
- Gary Koop & Stuart McIntyre & James Mitchell, 2020. "UK regional nowcasting using a mixed frequency vector auto‐regressive model with entropic tilting," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 91-119, January.
- Marta Baltar Moreira Areosa & Wagner Piazza Gaglianone, 2023. "Anchoring Long-term VAR Forecasts Based On Survey Data and State-space Models," Working Papers Series 574, Central Bank of Brazil, Research Department.
- Bańbura, Marta & Brenna, Federica & Paredes, Joan & Ravazzolo, Francesco, 2021. "Combining Bayesian VARs with survey density forecasts: does it pay off?," Working Paper Series 2543, European Central Bank.
- Fabian Krüger & Sebastian Lerch & Thordis Thorarinsdottir & Tilmann Gneiting, 2021. "Predictive Inference Based on Markov Chain Monte Carlo Output," International Statistical Review, International Statistical Institute, vol. 89(2), pages 274-301, August.
- Markus Heinrich & Magnus Reif, 2020. "Real-Time Forecasting Using Mixed-Frequency VARS with Time-Varying Parameters," CESifo Working Paper Series 8054, CESifo.