IDEAS home Printed from https://ideas.repec.org/r/wop/safiwp/98-11-104.html
   My bibliography  Save this item

Allometric Scaling of Plant Energetics and Population Density

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Sorrell, Steve, 2015. "Reducing energy demand: A review of issues, challenges and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 74-82.
  2. Wolpert, David & Harper, Kyle, 2024. "The computational power of a human society: a new model of social evolution," SocArXiv qj83z, Center for Open Science.
  3. Chen, Yanguang, 2014. "An allometric scaling relation based on logistic growth of cities," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 65-77.
  4. Tao, Yong & Lin, Li & Wang, Hanjie & Hou, Chen, 2023. "Superlinear growth and the fossil fuel energy sustainability dilemma: Evidence from six continents," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 39-51.
  5. Wiegand, Kerstin & Saltz, David & Ward, David & Levin, Simon A., 2008. "The role of size inequality in self-thinning: A pattern-oriented simulation model for arid savannas," Ecological Modelling, Elsevier, vol. 210(4), pages 431-445.
  6. Peters, Ronny & Olagoke, Adewole & Berger, Uta, 2018. "A new mechanistic theory of self-thinning: Adaptive behaviour of plants explains the shape and slope of self-thinning trajectories," Ecological Modelling, Elsevier, vol. 390(C), pages 1-9.
  7. David H. Wolpert & Kyle Harper, 2024. "The computational power of a human society: a new model of social evolution," Papers 2408.08861, arXiv.org, revised Feb 2025.
  8. Louis J. Irving, 2015. "Carbon Assimilation, Biomass Partitioning and Productivity in Grasses," Agriculture, MDPI, vol. 5(4), pages 1-19, November.
  9. Harris, Lora A. & Brush, Mark J., 2012. "Bridging the gap between empirical and mechanistic models of aquatic primary production with the metabolic theory of ecology: An example from estuarine ecosystems," Ecological Modelling, Elsevier, vol. 233(C), pages 83-89.
  10. He, Ji-Huan, 2007. "Shrinkage of body size of small insects: A possible link to global warming?," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 727-729.
  11. Laurent Augusto & Antra Boča, 2022. "Tree functional traits, forest biomass, and tree species diversity interact with site properties to drive forest soil carbon," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  12. Xinjing Ding & Peixi Su & Zijuan Zhou & Rui Shi, 2019. "Belowground Bud Bank Distribution and Aboveground Community Characteristics along Different Moisture Gradients of Alpine Meadow in the Zoige Plateau, China," Sustainability, MDPI, vol. 11(9), pages 1-13, May.
  13. Chen, Yanguang & Wang, Yihan & Li, Xijing, 2019. "Fractal dimensions derived from spatial allometric scaling of urban form," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 122-134.
  14. Jiang Zhang & Lingfei Wu, 2013. "Allometry and Dissipation of Ecological Flow Networks," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-8, September.
  15. Ogawa, Kazuharu, 2017. "Modeling age-related stand respiration changes in forest stands under the self-thinning law," Ecological Modelling, Elsevier, vol. 349(C), pages 62-68.
  16. Chen, Yanguang, 2017. "Multi-scaling allometric analysis for urban and regional development," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 673-689.
  17. Barnes, Belinda & Mokany, Karel & Roderick, Michael, 2007. "Allocation within a generic scaling framework," Ecological Modelling, Elsevier, vol. 201(2), pages 223-232.
  18. Hendriks, A. Jan, 2007. "The power of size: A meta-analysis reveals consistency of allometric regressions," Ecological Modelling, Elsevier, vol. 205(1), pages 196-208.
  19. Song, Dong-Ming & Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2009. "Statistical properties of world investment networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(12), pages 2450-2460.
  20. Ma, Ping & Han, Xiao-Hui & Lin, Yue & Moore, John & Guo, Yao-Xin & Yue, Ming, 2019. "Exploring the relative importance of biotic and abiotic factors that alter the self-thinning rule: Insights from individual-based modelling and machine-learning," Ecological Modelling, Elsevier, vol. 397(C), pages 16-24.
  21. Ogawa, Kazuharu, 2018. "Mathematical consideration of the age-related decline in leaf biomass in forest stands under the self-thinning law," Ecological Modelling, Elsevier, vol. 372(C), pages 64-69.
  22. Wolpert, David & Harper, Kyle, 2024. "The computational power of a human society: a new model of social evolution," SocArXiv qj83z_v1, Center for Open Science.
  23. Ogawa, Kazuharu, 2009. "Mathematical analysis of change in forest carbon use efficiency with stand development: A case study on Abies veitchii Lindl," Ecological Modelling, Elsevier, vol. 220(11), pages 1419-1424.
  24. Hunt, Allen G. & Faybishenko, Boris & Powell, Thomas L., 2020. "A new phenomenological model to describe root-soil interactions based on percolation theory," Ecological Modelling, Elsevier, vol. 433(C).
  25. John J. Kineman & Krupanidhi Srirama & Jennifer Wilby & Bruce T. Milne, 2017. "Elements of a Holistic Theory to Meet the Sustainability Challenge," Systems Research and Behavioral Science, Wiley Blackwell, vol. 34(5), pages 553-563, September.
  26. Lu, Zhihao & Yin, Di & Chen, Peng & Wang, Hongzhen & Yang, Yuhang & Huang, Guangtuan & Cai, Lankun & Zhang, Lehua, 2020. "Power-generating trees: Direct bioelectricity production from plants with microbial fuel cells," Applied Energy, Elsevier, vol. 268(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.