IDEAS home Printed from https://ideas.repec.org/r/tor/tecipa/tecipa-336.html
   My bibliography  Save this item

Real Time Detection of Structural Breaks in GARCH Models

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Mario Bonino & Matteo Camelia & Paolo Pigato, 2014. "A multivariate model for financial indices and an algorithm for detection of jumps in the volatility," Papers 1404.7632, arXiv.org, revised Dec 2016.
  2. Bauwens, Luc & Dufays, Arnaud & Rombouts, Jeroen V.K., 2014. "Marginal likelihood for Markov-switching and change-point GARCH models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 508-522.
  3. De Wachter, Stefan & Tzavalis, Elias, 2012. "Detection of structural breaks in linear dynamic panel data models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3020-3034.
  4. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
  5. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2016. "Efficient Gibbs sampling for Markov switching GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 37-57.
  6. Almeida e Santos Nogueira, R.J. & Basturk, N. & Kaymak, U. & Costa Sousa, J.M., 2013. "Estimation of flexible fuzzy GARCH models for conditional density estimation," ERIM Report Series Research in Management ERS-2013-013-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  7. Arnaud Dufays, 2016. "Evolutionary Sequential Monte Carlo Samplers for Change-Point Models," Econometrics, MDPI, vol. 4(1), pages 1-33, March.
  8. He, Zhongfang & Maheu, John M., 2010. "Real time detection of structural breaks in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2628-2640, November.
  9. BAUWENS, Luc & DUFAYS, Arnaud & DE BACKER, Bruno, 2011. "Estimating and forecasting structural breaks in financial time series," LIDAM Discussion Papers CORE 2011055, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  10. Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    • BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  11. Giampiero M. Gallo & Edoardo Otranto, 2014. "Forecasting Realized Volatility with Changes of Regimes," Econometrics Working Papers Archive 2014_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Feb 2014.
  12. He, Zhongfang, 2009. "Forecasting output growth by the yield curve: the role of structural breaks," MPRA Paper 28208, University Library of Munich, Germany.
  13. Chan, Joshua C.C. & Koop, Gary, 2014. "Modelling breaks and clusters in the steady states of macroeconomic variables," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 186-193.
  14. Bildirici, Melike & Ersin, Özgür, 2012. "Nonlinear volatility models in economics: smooth transition and neural network augmented GARCH, APGARCH, FIGARCH and FIAPGARCH models," MPRA Paper 40330, University Library of Munich, Germany, revised May 2012.
  15. Kim, Kyungwon, 2013. "Modeling financial crisis period: A volatility perspective of Credit Default Swap market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4977-4988.
  16. DUFAYS, Arnaud, 2012. "Infinite-state Markov-switching for dynamic volatility and correlation models," LIDAM Discussion Papers CORE 2012043, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  17. Jian He & Asma Khedher & Peter Spreij, 2021. "A Kalman particle filter for online parameter estimation with applications to affine models," Statistical Inference for Stochastic Processes, Springer, vol. 24(2), pages 353-403, July.
  18. Kim, Kyungwon & Jung, Sean S., 2014. "Empirical analysis of structural change in Credit Default Swap volatility," Chaos, Solitons & Fractals, Elsevier, vol. 60(C), pages 56-67.
  19. Jin, Xin & Maheu, John M., 2016. "Modeling covariance breakdowns in multivariate GARCH," Journal of Econometrics, Elsevier, vol. 194(1), pages 1-23.
  20. Gallo, Giampiero M. & Otranto, Edoardo, 2015. "Forecasting realized volatility with changing average levels," International Journal of Forecasting, Elsevier, vol. 31(3), pages 620-634.
  21. Roberto Casarin & Domenico Sartore & Marco Tronzano, 2018. "A Bayesian Markov-Switching Correlation Model for Contagion Analysis on Exchange Rate Markets," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 101-114, January.
  22. Nonejad, Nima, 2017. "Parameter instability, stochastic volatility and estimation based on simulated likelihood: Evidence from the crude oil market," Economic Modelling, Elsevier, vol. 61(C), pages 388-408.
  23. Gordon J. Ross, 2012. "Modeling Financial Volatility in the Presence of Abrupt Changes," Papers 1212.6016, arXiv.org.
  24. Bauwens, Luc & De Backer, Bruno & Dufays, Arnaud, 2014. "A Bayesian method of change-point estimation with recurrent regimes: Application to GARCH models," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 207-229.
  25. Ross, Gordon J., 2013. "Modelling financial volatility in the presence of abrupt changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(2), pages 350-360.
  26. Sigauke, C. & Chikobvu, D., 2011. "Prediction of daily peak electricity demand in South Africa using volatility forecasting models," Energy Economics, Elsevier, vol. 33(5), pages 882-888, September.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.