IDEAS home Printed from https://ideas.repec.org/p/edn/sirdps/263.html
   My bibliography  Save this paper

Modelling Breaks and Clusters in the Steady States of Macroeconomic Variables

Author

Listed:
  • Chan, Joshua C.C.
  • Koop, Gary

Abstract

Macroeconomists working with multivariate models typically face uncertainty over which (if any) of their variables have long run steady states which are subject to breaks. Furthermore, the nature of the break process is often unknown. In this paper, we draw on methods from the Bayesian clustering literature to develop an econometric methodology which: i) finds groups of variables which have the same number of breaks; and ii) determines the nature of the break process within each group. We present an application involving a five-variate steady-state VAR.

Suggested Citation

  • Chan, Joshua C.C. & Koop, Gary, 2011. "Modelling Breaks and Clusters in the Steady States of Macroeconomic Variables," SIRE Discussion Papers 2011-22, Scottish Institute for Research in Economics (SIRE).
  • Handle: RePEc:edn:sirdps:263
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10943/263
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Del Negro, Marco & Schorfheide, Frank, 2008. "Forming priors for DSGE models (and how it affects the assessment of nominal rigidities)," Journal of Monetary Economics, Elsevier, vol. 55(7), pages 1191-1208, October.
    2. Christopher A. Sims & Tao Zha, 2006. "Were There Regime Switches in U.S. Monetary Policy?," American Economic Review, American Economic Association, vol. 96(1), pages 54-81, March.
    3. John Geweke & Gianni Amisano, 2011. "Hierarchical Markov normal mixture models with applications to financial asset returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(1), pages 1-29, January/F.
    4. Geweke, John & Keane, Michael, 2007. "Smoothly mixing regressions," Journal of Econometrics, Elsevier, vol. 138(1), pages 252-290, May.
    5. Timothy Cogley & Thomas J. Sargent, 2005. "Drift and Volatilities: Monetary Policies and Outcomes in the Post WWII U.S," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 262-302, April.
    6. He, Zhongfang & Maheu, John M., 2010. "Real time detection of structural breaks in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2628-2640, November.
    7. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    8. Jochmann, Markus & Koop, Gary & Strachan, Rodney W., 2010. "Bayesian forecasting using stochastic search variable selection in a VAR subject to breaks," International Journal of Forecasting, Elsevier, vol. 26(2), pages 326-347, April.
    9. Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2008. "Marginal likelihoods for non-Gaussian models using auxiliary mixture sampling," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4608-4624, June.
    10. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    11. Tadesse, Mahlet G. & Sha, Naijun & Vannucci, Marina, 2005. "Bayesian Variable Selection in Clustering High-Dimensional Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 602-617, June.
    12. Mattias Villani, 2009. "Steady-state priors for vector autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 630-650.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Louzis Dimitrios P., 2016. "Steady-state priors and Bayesian variable selection in VAR forecasting," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(5), pages 495-527, December.
    2. Fisher, Mark & Jensen, Mark J., 2019. "Bayesian inference and prediction of a multiple-change-point panel model with nonparametric priors," Journal of Econometrics, Elsevier, vol. 210(1), pages 187-202.
    3. Tallman, Ellis W. & Zaman, Saeed, 2020. "Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy," International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
    4. Maximo Camacho & María Dolores Gadea & Ana Gómez Loscos, 2022. "A New Approach to Dating the Reference Cycle," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 66-81, January.
    5. Perricone, Chiara, 2018. "Clustering macroeconomic variables," Structural Change and Economic Dynamics, Elsevier, vol. 44(C), pages 23-33.
    6. Dimitrios P. Louzis, 2019. "Steady‐state modeling and macroeconomic forecasting quality," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(2), pages 285-314, March.
    7. Dimitrios P. Louzis, 2016. "Macroeconomic forecasting and structural changes in steady states," Working Papers 204, Bank of Greece.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pablo A. Guerrón-Quintana & James M. Nason, 2013. "Bayesian estimation of DSGE models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 21, pages 486-512, Edward Elgar Publishing.
    2. Leonardo Melosi, 2017. "Signalling Effects of Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 84(2), pages 853-884.
    3. Francesco Bianchi & Leonardo Melosi, 2018. "Constrained Discretion and Central Bank Transparency," The Review of Economics and Statistics, MIT Press, vol. 100(1), pages 187-202, March.
    4. Zheng Liu & Daniel F. Waggoner & Tao Zha, 2009. "Sources of the Great Moderation: shocks, frictions, or monetary policy?," FRB Atlanta Working Paper 2009-03, Federal Reserve Bank of Atlanta.
    5. Hofmann, Boris & Peersman, Gert & Straub, Roland, 2012. "Time variation in U.S. wage dynamics," Journal of Monetary Economics, Elsevier, vol. 59(8), pages 769-783.
    6. Guido Ascari & Paolo Bonomolo & Qazi Haque, 2023. "The Long-Run Phillips Curve is ... a Curve," Working Papers 789, DNB.
    7. Kostas Mavromatis, 2018. "U.S. Monetary Regimes and Optimal Monetary Policy in the Euro Area," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(7), pages 1441-1478, October.
    8. Castelnuovo, Efrem & Nisticò, Salvatore, 2010. "Stock market conditions and monetary policy in a DSGE model for the U.S," Journal of Economic Dynamics and Control, Elsevier, vol. 34(9), pages 1700-1731, September.
    9. Pancrazi, Roberto & Vukotic, Marija, 2012. "Technology Persistence and Monetary Policy," Economic Research Papers 270536, University of Warwick - Department of Economics.
    10. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    11. Kostas Mavromatis, 2020. "Finite Horizons and the Monetary/Fiscal Policy Mix," International Journal of Central Banking, International Journal of Central Banking, vol. 16(4), pages 327-378, September.
    12. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    13. Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney W., 2011. "Bayesian inference in a time varying cointegration model," Journal of Econometrics, Elsevier, vol. 165(2), pages 210-220.
    14. Benjamin Wong, 2017. "Historical decompositions for nonlinear vector autoregression models," CAMA Working Papers 2017-62, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    15. Kliem, Martin & Kriwoluzky, Alexander & Sarferaz, Samad, 2016. "Monetary–fiscal policy interaction and fiscal inflation: A tale of three countries," European Economic Review, Elsevier, vol. 88(C), pages 158-184.
    16. Benoit Mojon, 2007. "Monetary policy, output composition and the Great Moderation," Working Paper Series WP-07-07, Federal Reserve Bank of Chicago.
    17. Carrillo, Julio A. & Peersman, Gert & Wauters, Joris, 2022. "Endogenous wage indexation and aggregate shocks," Journal of Macroeconomics, Elsevier, vol. 72(C).
    18. Belomestny, Denis & Krymova, Ekaterina & Polbin, Andrey, 2021. "Bayesian TVP-VARX models with time invariant long-run multipliers," Economic Modelling, Elsevier, vol. 101(C).
    19. Jochmann, Markus & Koop, Gary & Strachan, Rodney W., 2010. "Bayesian forecasting using stochastic search variable selection in a VAR subject to breaks," International Journal of Forecasting, Elsevier, vol. 26(2), pages 326-347, April.
    20. Andrea Silvestrini & Andrea Zaghini, 2015. "Financial shocks and the real economy in a nonlinear world: a survey of the theoretical and empirical literature," Questioni di Economia e Finanza (Occasional Papers) 255, Bank of Italy, Economic Research and International Relations Area.

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:edn:sirdps:263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Research Office (email available below). General contact details of provider: https://edirc.repec.org/data/sireeuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.