My bibliography
Save this item
Maximum likelihood estimation of the multivariate normal mixture model
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gabriele Soffritti, 2021. "Estimating the Covariance Matrix of the Maximum Likelihood Estimator Under Linear Cluster-Weighted Models," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 594-625, October.
- Wan-Lun Wang & Tsung-I Lin, 2015. "Robust model-based clustering via mixtures of skew-t distributions with missing information," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(4), pages 423-445, December.
- Giuliano Galimberti & Lorenzo Nuzzi & Gabriele Soffritti, 2021. "Covariance matrix estimation of the maximum likelihood estimator in multivariate clusterwise linear regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 235-268, March.
- Su, EnDer & Wen Wong, Kai, 2019. "Testing the alternative two-state options pricing models: An empirical analysis on TXO," The Quarterly Review of Economics and Finance, Elsevier, vol. 72(C), pages 101-116.
- Zimmer, Zachary & Park, DoHwan & Mathew, Thomas, 2016. "Tolerance limits under normal mixtures: Application to the evaluation of nuclear power plant safety and to the assessment of circular error probable," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 304-315.
- Andrew M. Raim & Nagaraj K. Neerchal & Jorge G. Morel, 2017. "An approximation to the information matrix of exponential family finite mixtures," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 333-364, April.
- Wan-Lun Wang & Tsung-I Lin, 2020. "Automated learning of mixtures of factor analysis models with missing information," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 1098-1124, December.
- Ivana Malá, 2015. "Vícerozměrný pravděpodobnostní model rozdělení příjmů českých domácností [Multivariate Probability Model For Incomes of the Czech Households]," Politická ekonomie, Prague University of Economics and Business, vol. 2015(7), pages 895-908.
- Strebel, Oliver, 2022. "Tutorial on the expectation maximization algorithm for mixture distributions," OSF Preprints dnm72, Center for Open Science.
- Diani, Cecilia & Galimberti, Giuliano & Soffritti, Gabriele, 2022. "Multivariate cluster-weighted models based on seemingly unrelated linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
- Dante Amengual & Gabriele Fiorentini & Enrique Sentana, 2024. "The information matrix test for Gaussian mixtures," Working Papers wp2024_2401, CEMFI.
- Kenichi Hayashi, 2018. "Asymptotic comparison of semi-supervised and supervised linear discriminant functions for heteroscedastic normal populations," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 315-339, June.
- Melnykov, Volodymyr & Zhu, Xuwen, 2018. "On model-based clustering of skewed matrix data," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 181-194.
- Wan-Lun Wang & Tsung-I Lin, 2022. "Robust clustering via mixtures of t factor analyzers with incomplete data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 659-690, September.
- Wang, Wan-Lun & Lin, Tsung-I, 2016. "Maximum likelihood inference for the multivariate t mixture model," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 54-64.
- Bolano, Danilo & Berchtold, André, 2016. "General framework and model building in the class of Hidden Mixture Transition Distribution models," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 131-145.
- Dante Amengual & Gabriele Fiorentini & Enrique Sentana, 2022.
"Moment tests of independent components,"
SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 13(1), pages 429-474, May.
- Dante Amengual & Gabriele Fiorentini & Enrique Sentana, 2021. "Moment tests of independent components," Working Papers wp2021_2102, CEMFI.
- Montanari, Angela & Viroli, Cinzia, 2011. "Maximum likelihood estimation of mixtures of factor analyzers," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2712-2723, September.
- Fiorentini, Gabriele & Sentana, Enrique, 2023.
"Discrete mixtures of normals pseudo maximum likelihood estimators of structural vector autoregressions,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 643-665.
- Sentana, Enrique & Fiorentini, Gabriele, 2020. "Discrete Mixtures of Normals Pseudo Maximum Likelihood Estimators of Structural Vector Autoregressions," CEPR Discussion Papers 15411, C.E.P.R. Discussion Papers.
- Gabriele Fiorentini & Enrique Sentana, 2020. "Discrete Mixtures of Normals Pseudo Maximum Likelihood Estimators of Structural Vector Autoregressions," Working Papers wp2020_2023, CEMFI.
- Wang, Wan-Lun, 2015. "Mixtures of common t-factor analyzers for modeling high-dimensional data with missing values," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 223-235.
- Melnykov, Volodymyr, 2013. "On the distribution of posterior probabilities in finite mixture models with application in clustering," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 175-189.
- Teng Fei & John Hanfelt & Limin Peng, 2023. "Evaluating the association between latent classes and competing risks outcomes with multiphenotype data," Biometrics, The International Biometric Society, vol. 79(1), pages 488-501, March.
- Adrian O’Hagan & Thomas Brendan Murphy & Luca Scrucca & Isobel Claire Gormley, 2019. "Investigation of parameter uncertainty in clustering using a Gaussian mixture model via jackknife, bootstrap and weighted likelihood bootstrap," Computational Statistics, Springer, vol. 34(4), pages 1779-1813, December.
- Shiow-Lan Gau & Jean Dieu Tapsoba & Shen-Ming Lee, 2014. "Bayesian approach for mixture models with grouped data," Computational Statistics, Springer, vol. 29(5), pages 1025-1043, October.
- Cheng, Ya-Shan & Peng, Chien-Yu, 2012. "Integrated Degradation Models in R Using iDEMO," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 49(i02).
- Wang, Wan-Lun, 2013. "Mixtures of common factor analyzers for high-dimensional data with missing information," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 120-133.