IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v93y2016icp131-145.html
   My bibliography  Save this article

General framework and model building in the class of Hidden Mixture Transition Distribution models

Author

Listed:
  • Bolano, Danilo
  • Berchtold, André

Abstract

Modeling time series that present non-Gaussian features plays as central role in many fields, including finance, seismology, psychological, and life course studies. The Hidden Mixture Transition Distribution model is an answer to the complexity of such series. The observed heterogeneity can be induced by one or several latent factors, and each level of these factors is related to a different component of the observed process. The time series is then treated as a mixture and the relation between the components is governed by a Markovian latent transition process. This framework generalizes several specifications that appear separately in related literature. Both the expectation and the standard deviation of each component are allowed to be functions of the past of the process. The latent process can be of any order, and can be modeled using a discrete Mixture Transition Distribution. The effects of covariates at the visible and hidden levels are also investigated. One of the main difficulties lies in correctly specifying the structure of the model. Therefore, we propose a hierarchical model selection procedure that exploits the multilevel structure of our approach. Finally, we illustrate the model and the model selection procedure through a real application in social science.

Suggested Citation

  • Bolano, Danilo & Berchtold, André, 2016. "General framework and model building in the class of Hidden Mixture Transition Distribution models," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 131-145.
  • Handle: RePEc:eee:csdana:v:93:y:2016:i:c:p:131-145
    DOI: 10.1016/j.csda.2014.09.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947314002722
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2014.09.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kon, Stanley J, 1984. "Models of Stock Returns-A Comparison," Journal of Finance, American Finance Association, vol. 39(1), pages 147-165, March.
    2. Boldea, Otilia & Magnus, Jan R., 2009. "Maximum Likelihood Estimation of the Multivariate Normal Mixture Model," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1539-1549.
    3. Oded Netzer & James M. Lattin & V. Srinivasan, 2008. "A Hidden Markov Model of Customer Relationship Dynamics," Marketing Science, INFORMS, vol. 27(2), pages 185-204, 03-04.
    4. Kim, Dongcheol & Kon, Stanley J, 1994. "Alternative Models for the Conditional Heteroscedasticity of Stock Returns," The Journal of Business, University of Chicago Press, vol. 67(4), pages 563-598, October.
    5. Frydman, Halina & Schuermann, Til, 2008. "Credit rating dynamics and Markov mixture models," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 1062-1075, June.
    6. Francesco Bartolucci & Alessio Farcomeni, 2010. "A note on the mixture transition distribution and hidden Markov models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(2), pages 132-138, March.
    7. Elliott, Robert J. & Hunter, William C. & Jamieson, Barbara M., 1998. "Drift and volatility estimation in discrete time," Journal of Economic Dynamics and Control, Elsevier, vol. 22(2), pages 209-218, February.
    8. G. Kapetanios, 2008. "A bootstrap procedure for panel data sets with many cross-sectional units," Econometrics Journal, Royal Economic Society, vol. 11(2), pages 377-395, July.
    9. Jörn Dannemann & Hajo Holzmann, 2008. "Likelihood Ratio Testing for Hidden Markov Models Under Non‐standard Conditions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(2), pages 309-321, June.
    10. C. S. Wong & W. K. Li, 2000. "On a mixture autoregressive model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 95-115.
    11. Takaki Hayashi, 2004. "A duscrete-time model of high-frequency stock returns," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 140-150.
    12. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    13. Gabadinho, Alexis & Ritschard, Gilbert & Müller, Nicolas S & Studer, Matthias, 2011. "Analyzing and Visualizing State Sequences in R with TraMineR," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i04).
    14. Matthew Stephens, 2000. "Dealing with label switching in mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 795-809.
    15. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    16. Hassan, Mohamed Yusuf & Lii, Keh-Shin, 2006. "Modeling Marked Point Processes via Bivariate Mixture Transition Distribution Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1241-1252, September.
    17. Paolo Giudici & Tobias Ryden & Pierre Vandekerkhove, 2000. "Likelihood-Ratio Tests for Hidden Markov Models," Biometrics, The International Biometric Society, vol. 56(3), pages 742-747, September.
    18. Berchtold, Andre, 2003. "Mixture transition distribution (MTD) modeling of heteroscedastic time series," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 399-411, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michal Engelman & Heide Jackson, 2019. "Gradual Change, Homeostasis, and Punctuated Equilibrium: Reconsidering Patterns of Health in Later Life," Demography, Springer;Population Association of America (PAA), vol. 56(6), pages 2323-2347, December.
    2. Liao, Tim F. & Bolano, Danilo & Brzinsky-Fay, Christian & Cornwell, Benjamin & Fasang, Anette Eva & Helske, Satu & Piccarreta, Raffaella & Raab, Marcel & Ritschard, Gilbert & Struffolino, Emanuela & S, 2022. "Sequence analysis: Its past, present, and future," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 107, pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berchtold, Andre, 2003. "Mixture transition distribution (MTD) modeling of heteroscedastic time series," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 399-411, January.
    2. Rossi, Alessandro & Gallo, Giampiero M., 2006. "Volatility estimation via hidden Markov models," Journal of Empirical Finance, Elsevier, vol. 13(2), pages 203-230, March.
    3. Rombouts Jeroen V. K. & Bouaddi Mohammed, 2009. "Mixed Exponential Power Asymmetric Conditional Heteroskedasticity," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(3), pages 1-32, May.
    4. Markus Haas, 2004. "Mixed Normal Conditional Heteroskedasticity," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 211-250.
    5. Sei‐Wan Kim & Bong‐Soo Lee, 2008. "Stock Returns, Asymmetric Volatility, Risk Aversion, And Business Cycle: Some New Evidence," Economic Inquiry, Western Economic Association International, vol. 46(2), pages 131-148, April.
    6. Wilfling, Bernd, 2009. "Volatility regime-switching in European exchange rates prior to monetary unification," Journal of International Money and Finance, Elsevier, vol. 28(2), pages 240-270, March.
    7. Ryan Lemand, 2003. "The Contagion Effect Between the Volatilities of the NASDAQ-100 and the IT.CA :A Univariate and A Bivariate Switching Approach," Econometrics 0307002, University Library of Munich, Germany, revised 07 Dec 2020.
    8. James D. Hamilton & Daniel F. Waggoner & Tao Zha, 2007. "Normalization in Econometrics," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 221-252.
    9. Nengjiu Ju & Jianjun Miao, 2012. "Ambiguity, Learning, and Asset Returns," Econometrica, Econometric Society, vol. 80(2), pages 559-591, March.
    10. Alexander David & Pietro Veronesi, 1998. "Option Prices with Uncertain Fundamentals: Theory and Evidence on the Dynamics of Implied Volatilities," CRSP working papers 485, Center for Research in Security Prices, Graduate School of Business, University of Chicago.
    11. Frank J. Fabozzi & Radu Tunaru & Tony Wu, 2004. "Modeling Volatility for the Chinese Equity Markets," Annals of Economics and Finance, Society for AEF, vol. 5(1), pages 79-92, May.
    12. Richard Ashley, 2012. "On the Origins of Conditional Heteroscedasticity in Time Series," Korean Economic Review, Korean Economic Association, vol. 28, pages 5-25.
    13. Onur Enginar & Kazim Baris Atici, 2022. "Optimal forecast error as an unbiased estimator of abnormal return: A proposition," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 158-166, January.
    14. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    15. Fong, Wai Mun, 1997. "Robust beta estimation: Some empirical evidence," Review of Financial Economics, Elsevier, vol. 6(2), pages 167-186.
    16. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Kappe, Eelco & Stadler Blank, Ashley & DeSarbo, Wayne S., 2018. "A random coefficients mixture hidden Markov model for marketing research," International Journal of Research in Marketing, Elsevier, vol. 35(3), pages 415-431.
    18. Wessam M. T. Abouarghoub & Iris Biefang-Frisancho Mariscal, 2011. "Measuring level of risk exposure in tanker Shipping freight markets," International Journal of Business and Social Research, MIR Center for Socio-Economic Research, vol. 1(1), pages 20-44, December.
    19. Brian Hartley, 2020. "Corridor stability of the Kaleckian growth model: a Markov-switching approach," Working Papers 2013, New School for Social Research, Department of Economics, revised Nov 2020.
    20. Stavros Degiannakis & Alexandra Livada & Epaminondas Panas, 2008. "Rolling-sampled parameters of ARCH and Levy-stable models," Applied Economics, Taylor & Francis Journals, vol. 40(23), pages 3051-3067.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:93:y:2016:i:c:p:131-145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.