IDEAS home Printed from https://ideas.repec.org/r/taf/quantf/v9y2009i3p279-287.html
   My bibliography  Save this item

A two-factor model for the electricity forward market

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Piccirilli, Marco & Schmeck, Maren Diane & Vargiolu, Tiziano, 2021. "Capturing the power options smile by an additive two-factor model for overlapping futures prices," Energy Economics, Elsevier, vol. 95(C).
  2. Joanna Janczura & Rafal Weron, 2012. "Inference for Markov-regime switching models of electricity spot prices," HSC Research Reports HSC/12/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
  3. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
  4. Latini, Luca & Piccirilli, Marco & Vargiolu, Tiziano, 2019. "Mean-reverting no-arbitrage additive models for forward curves in energy markets," Energy Economics, Elsevier, vol. 79(C), pages 157-170.
  5. Ali Al-Aradi & Alvaro Cartea & Sebastian Jaimungal, 2018. "Technical Uncertainty in Real Options with Learning," Papers 1803.05831, arXiv.org, revised Jul 2018.
  6. Kanamura, Takashi & Bunn, Derek W., 2022. "Market making and electricity price formation in Japan," Energy Economics, Elsevier, vol. 107(C).
  7. Birkelund, Ole Henrik & Haugom, Erik & Molnár, Peter & Opdal, Martin & Westgaard, Sjur, 2015. "A comparison of implied and realized volatility in the Nordic power forward market," Energy Economics, Elsevier, vol. 48(C), pages 288-294.
  8. Kemper, Annika & Schmeck, Maren Diane & Kh.Balci, Anna, 2022. "The market price of risk for delivery periods: Pricing swaps and options in electricity markets," Energy Economics, Elsevier, vol. 113(C).
  9. Hendrik Kohrs & Hermann Mühlichen & Benjamin R. Auer & Frank Schuhmacher, 2019. "Pricing and risk of swing contracts in natural gas markets," Review of Derivatives Research, Springer, vol. 22(1), pages 77-167, April.
  10. Michel Culot & Valérie Goffin & Steve Lawford & Sébastien de Meten & Yves Smeers, 2013. "Practical stochastic modelling of electricity prices," Post-Print hal-01021603, HAL.
  11. Farshid Mehrdoust & Idin Noorani, 2023. "Valuation of Spark-Spread Option Written on Electricity and Gas Forward Contracts Under Two-Factor Models with Non-Gaussian Lévy Processes," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 807-853, February.
  12. Wieger Hinderks & Andreas Wagner & Ralf Korn, 2018. "A structural Heath-Jarrow-Morton framework for consistent intraday, spot, and futures electricity prices," Papers 1803.08831, arXiv.org, revised Jan 2019.
  13. Matteo Gardini & Edoardo Santilli, 2023. "A Heath-Jarrow-Morton framework for energy markets: a pragmatic approach," Papers 2305.01485, arXiv.org, revised Nov 2023.
  14. Benth, Fred Espen & Paraschiv, Florentina, 2016. "A Structural Model for Electricity Forward Prices," Working Papers on Finance 1611, University of St. Gallen, School of Finance.
  15. Benth, Fred Espen & Paraschiv, Florentina, 2018. "A space-time random field model for electricity forward prices," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 203-216.
  16. Erwan Pierre & Lorenz Schneider, 2024. "Intermittently coupled electricity markets," Post-Print hal-04411166, HAL.
  17. Hanfeld, Marc & Schlüter, Stephan, 2016. "Operating a swing option on today's gas markets: How least squares Monte Carlo works and why it is beneficial," FAU Discussion Papers in Economics 10/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
  18. Yu, Nanpeng & Foggo, Brandon, 2017. "Stochastic valuation of energy storage in wholesale power markets," Energy Economics, Elsevier, vol. 64(C), pages 177-185.
  19. Olivier Feron & Pierre Gruet, 2020. "Estimation of the number of factors in a multi-factorial Heath-Jarrow-Morton model in electricity markets," Working Papers hal-02880824, HAL.
  20. Cartea, Álvaro & González-Pedraz, Carlos, 2012. "How much should we pay for interconnecting electricity markets? A real options approach," Energy Economics, Elsevier, vol. 34(1), pages 14-30.
  21. Algieri, Bernardina & Leccadito, Arturo & Tunaru, Diana, 2021. "Risk premia in electricity derivatives markets," Energy Economics, Elsevier, vol. 100(C).
  22. Wieger Hinderks & Ralf Korn & Andreas Wagner, 2020. "Unifying the theory of storage and the risk premium by an unobservable intrinsic electricity price," Papers 2011.03987, arXiv.org.
  23. Nijman, Luuk, 2012. "The impact of the new wave of financial regulation for European energy markets," Energy Policy, Elsevier, vol. 47(C), pages 468-477.
  24. Emanuele Fabbiani & Andrea Marziali & Giuseppe De Nicolao, 2018. "Fast calibration of two-factor models for energy option pricing," Papers 1809.03941, arXiv.org, revised Dec 2020.
  25. Kemper, Annika & Schmeck, Maren Diane & Khripunova Balci, Anna, 2020. "The Market Price of Risk for Delivery Periods: Pricing Swaps and Options in Electricity Markets," Center for Mathematical Economics Working Papers 635, Center for Mathematical Economics, Bielefeld University.
  26. Fred Espen Benth & Marco Piccirilli & Tiziano Vargiolu, 2017. "Additive energy forward curves in a Heath-Jarrow-Morton framework," Papers 1709.03310, arXiv.org, revised Jun 2018.
  27. Thomas Deschatre & Olivier F'eron & Pierre Gruet, 2021. "A survey of electricity spot and futures price models for risk management applications," Papers 2103.16918, arXiv.org, revised Jul 2021.
  28. Pierre, Erwan & Schneider, Lorenz, 2024. "Intermittently coupled electricity markets," Energy Economics, Elsevier, vol. 130(C).
  29. Iván Blanco, Juan Ignacio Peña, and Rosa Rodriguez, 2018. "Modelling Electricity Swaps with Stochastic Forward Premium Models," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
  30. Hepperger, Peter, 2012. "Hedging electricity swaptions using partial integro-differential equations," Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 600-622.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.