IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-02880824.html
   My bibliography  Save this paper

Estimation of the number of factors in a multi-factorial Heath-Jarrow-Morton model in electricity markets

Author

Listed:
  • Olivier Feron

    (EDF - EDF, FiME Lab - Laboratoire de Finance des Marchés d'Energie - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CREST - EDF R&D - EDF R&D - EDF - EDF)

  • Pierre Gruet

    (EDF - EDF, FiME Lab - Laboratoire de Finance des Marchés d'Energie - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CREST - EDF R&D - EDF R&D - EDF - EDF)

Abstract

In this paper we study the calibration of specific multi-factorial Heath-Jarrow-Morton models to electricity market prices, with a focus on the estimation of the optimal number of factors. We describe a common statistical procedure based on likelihood maximisation and Akaike / Bayesian information criteria, in the case of calibration on futures prices, as well as on both spot and futures prices. We perform a detailed analysis on 6 European markets: Belgium, France, Germany, Italy, Switzerland and UK. The results show a lot of similarities on all the markets considered, especially on the optimal number of factors equal to 5; and on the behaviour of the different factors.

Suggested Citation

  • Olivier Feron & Pierre Gruet, 2020. "Estimation of the number of factors in a multi-factorial Heath-Jarrow-Morton model in electricity markets," Working Papers hal-02880824, HAL.
  • Handle: RePEc:hal:wpaper:hal-02880824
    Note: View the original document on HAL open archive server: https://hal.science/hal-02880824
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02880824/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    2. Rudiger Kiesel & Gero Schindlmayr & Reik Borger, 2009. "A two-factor model for the electricity forward market," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 279-287.
    3. M. Dahlgren, 2005. "A Continuous Time Model to Price Commodity-Based Swing Options," Review of Derivatives Research, Springer, vol. 8(1), pages 27-47, June.
    4. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    5. Latini, Luca & Piccirilli, Marco & Vargiolu, Tiziano, 2019. "Mean-reverting no-arbitrage additive models for forward curves in energy markets," Energy Economics, Elsevier, vol. 79(C), pages 157-170.
    6. Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    7. Gibson, Rajna & Schwartz, Eduardo S, 1990. "Stochastic Convenience Yield and the Pricing of Oil Contingent Claims," Journal of Finance, American Finance Association, vol. 45(3), pages 959-976, July.
    8. Andrew Jeffrey, 2004. "Nonparametric Estimation of a Multifactor Heath-Jarrow-Morton Model: An Integrated Approach," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 251-289.
    9. Kemna, A. G. Z. & Vorst, A. C. F., 1990. "A pricing method for options based on average asset values," Journal of Banking & Finance, Elsevier, vol. 14(1), pages 113-129, March.
    10. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    11. Diko Pavel & Lawford Steve & Limpens Valerie, 2006. "Risk Premia in Electricity Forward Prices," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-24, September.
    12. Ram Bhar & Carl Chiarella, 1995. "The Estimation of the Heath-Jarrow-Morton Model by Use of Kalman Filtering Techniques," Working Paper Series 54, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    13. Mihaela Manoliu & Stathis Tompaidis, 2002. "Energy futures prices: term structure models with Kalman filter estimation," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(1), pages 21-43.
    14. Fred Espen Benth & Marco Piccirilli & Tiziano Vargiolu, 2017. "Additive energy forward curves in a Heath-Jarrow-Morton framework," Papers 1709.03310, arXiv.org, revised Jun 2018.
    15. Ram Bhar & Carl Chiarella & Thuy Duong To, 2002. "A Maximum Likelihood Approach to Estimation of Heath-Jarrow-Morton Models," Research Paper Series 80, Quantitative Finance Research Centre, University of Technology, Sydney.
    16. Benth, Fred Espen & Koekebakker, Steen, 2008. "Stochastic modeling of financial electricity contracts," Energy Economics, Elsevier, vol. 30(3), pages 1116-1157, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Gardini & Edoardo Santilli, 2023. "A Heath-Jarrow-Morton framework for energy markets: a pragmatic approach," Papers 2305.01485, arXiv.org, revised Nov 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
    2. Thomas Deschatre & Olivier F'eron & Pierre Gruet, 2021. "A survey of electricity spot and futures price models for risk management applications," Papers 2103.16918, arXiv.org, revised Jul 2021.
    3. Wieger Hinderks & Andreas Wagner & Ralf Korn, 2018. "A structural Heath-Jarrow-Morton framework for consistent intraday, spot, and futures electricity prices," Papers 1803.08831, arXiv.org, revised Jan 2019.
    4. Iván Blanco, Juan Ignacio Peña, and Rosa Rodriguez, 2018. "Modelling Electricity Swaps with Stochastic Forward Premium Models," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    5. Hendrik Kohrs & Hermann Mühlichen & Benjamin R. Auer & Frank Schuhmacher, 2019. "Pricing and risk of swing contracts in natural gas markets," Review of Derivatives Research, Springer, vol. 22(1), pages 77-167, April.
    6. Secomandi, Nicola & Seppi, Duane J., 2014. "Real Options and Merchant Operations of Energy and Other Commodities," Foundations and Trends(R) in Technology, Information and Operations Management, now publishers, vol. 6(3-4), pages 161-331, July.
    7. Moreno, Manuel & Novales, Alfonso & Platania, Federico, 2019. "Long-term swings and seasonality in energy markets," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1011-1023.
    8. Michel Culot & Valérie Goffin & Steve Lawford & Sébastien de Meten & Yves Smeers, 2013. "Practical stochastic modelling of electricity prices," Post-Print hal-01021603, HAL.
    9. Back, Janis & Prokopczuk, Marcel & Rudolf, Markus, 2013. "Seasonality and the valuation of commodity options," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 273-290.
    10. Max F. Schöne & Stefan Spinler, 2017. "A four-factor stochastic volatility model of commodity prices," Review of Derivatives Research, Springer, vol. 20(2), pages 135-165, July.
    11. Chris Brooks & Marcel Prokopczuk, 2013. "The dynamics of commodity prices," Quantitative Finance, Taylor & Francis Journals, vol. 13(4), pages 527-542, March.
    12. Cartea, Álvaro & González-Pedraz, Carlos, 2012. "How much should we pay for interconnecting electricity markets? A real options approach," Energy Economics, Elsevier, vol. 34(1), pages 14-30.
    13. Arismendi, Juan C. & Back, Janis & Prokopczuk, Marcel & Paschke, Raphael & Rudolf, Markus, 2016. "Seasonal Stochastic Volatility: Implications for the pricing of commodity options," Journal of Banking & Finance, Elsevier, vol. 66(C), pages 53-65.
    14. Latini, Luca & Piccirilli, Marco & Vargiolu, Tiziano, 2019. "Mean-reverting no-arbitrage additive models for forward curves in energy markets," Energy Economics, Elsevier, vol. 79(C), pages 157-170.
    15. Cheng, Benjamin & Nikitopoulos, Christina Sklibosios & Schlögl, Erik, 2018. "Pricing of long-dated commodity derivatives: Do stochastic interest rates matter?," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 148-166.
    16. Fred Espen Benth & Carlo Sgarra, 2024. "A Barndorff-Nielsen and Shephard model with leverage in Hilbert space for commodity forward markets," Finance and Stochastics, Springer, vol. 28(4), pages 1035-1076, October.
    17. Cartea, Álvaro & Williams, Thomas, 2008. "UK gas markets: The market price of risk and applications to multiple interruptible supply contracts," Energy Economics, Elsevier, vol. 30(3), pages 829-846, May.
    18. Anh Ngoc Lai & Constantin Mellios, 2016. "Valuation of commodity derivatives with an unobservable convenience yield," Post-Print halshs-01183166, HAL.
    19. Benth, Fred Espen & Koekebakker, Steen, 2015. "Pricing of forwards and other derivatives in cointegrated commodity markets," Energy Economics, Elsevier, vol. 52(PA), pages 104-117.
    20. Hiroaki Suenaga, 2013. "A flexible model of term-structure dynamics of commodity prices: a comparative analysis with a two-factor Gaussian model," Quantitative Finance, Taylor & Francis Journals, vol. 13(4), pages 509-526, March.

    More about this item

    Keywords

    Electricity markets; model calibration; model selection; power price model;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-02880824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.