My bibliography
Save this item
Bayesian Time-Varying Quantile Forecasting for Value-at-Risk in Financial Markets
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Klochkov, Yegor & Härdle, Wolfgang Karl & Xu, Xiu, 2019. "Localizing Multivariate CAViaR," IRTG 1792 Discussion Papers 2019-007, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Chen, Cathy W.S. & Gerlach, Richard & Hwang, Bruce B.K. & McAleer, Michael, 2012.
"Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range,"
International Journal of Forecasting, Elsevier, vol. 28(3), pages 557-574.
- Chen, C.W.S. & Gerlach, R. & Hwang, B.B.K. & McAleer, M.J., 2011. "Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intraday Range," Econometric Institute Research Papers EI 2011-17, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Cathy W. S. Chen & Richard Gerlach & Bruce B. K. Hwang & Michael McAleer, 2011. "Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intra-day Range," KIER Working Papers 775, Kyoto University, Institute of Economic Research.
- Cathy W. S. Chen & Richard Gerlach & Bruce B. K. Hwang & Michael McAleer, 2011. "Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intra-day Range," Documentos de Trabajo del ICAE 2011-16, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Cathy W. S. Chen & Richard Gerlach & Bruce B. K. Hwang & Michael McAleer, 2011. "Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intra-day Range," Working Papers in Economics 11/22, University of Canterbury, Department of Economics and Finance.
- Zhengkun Li & Minh-Ngoc Tran & Chao Wang & Richard Gerlach & Junbin Gao, 2020. "A Bayesian Long Short-Term Memory Model for Value at Risk and Expected Shortfall Joint Forecasting," Papers 2001.08374, arXiv.org, revised May 2021.
- Pfarrhofer, Michael, 2022.
"Modeling tail risks of inflation using unobserved component quantile regressions,"
Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
- Michael Pfarrhofer, 2021. "Modeling tail risks of inflation using unobserved component quantile regressions," Papers 2103.03632, arXiv.org, revised Oct 2021.
- Alhamzawi, Rahim & Yu, Keming, 2013. "Conjugate priors and variable selection for Bayesian quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 209-219.
- Jiang Zhengjun & Xia Weixuan, 2018.
"Volatility Modeling with Leverage Effect under Laplace Errors,"
Journal of Time Series Econometrics, De Gruyter, vol. 10(1), pages 1-29, January.
- Jiang Zhengjun & Xia Weixuan, 2018. "Volatility Modeling with Leverage Effect under Laplace Errors," Journal of Time Series Econometrics, De Gruyter, vol. 10(1), pages 1-29, January.
- Ayoub Ammy-Driss & Matthieu Garcin, 2021. "Efficiency of the financial markets during the COVID-19 crisis: time-varying parameters of fractional stable dynamics," Working Papers hal-02903655, HAL.
- Ayoub Ammy-Driss & Matthieu Garcin, 2020. "Efficiency of the financial markets during the COVID-19 crisis: time-varying parameters of fractional stable dynamics," Papers 2007.10727, arXiv.org, revised Nov 2021.
- Bagher Adabi & Mohsen Mehrara & Shapour Mohammadi, 2015. "Evaluation Approaches of Value at Risk for Tehran Stock Exchange," Iranian Economic Review (IER), Faculty of Economics,University of Tehran.Tehran,Iran, vol. 19(1), pages 41-62, Winter.
- Zongwu Cai & Xiyuan Liu, 2020. "A Functional-Coefficient VAR Model for Dynamic Quantiles with Constructing Financial Network," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202017, University of Kansas, Department of Economics, revised Oct 2020.
- Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
- Prodosh Simlai, 2021. "Accrual mispricing, value-at-risk, and expected stock returns," Review of Quantitative Finance and Accounting, Springer, vol. 57(4), pages 1487-1517, November.
- Korobilis, Dimitris & Landau, Bettina & Musso, Alberto & Phella, Anthoulla, 2021. "The time-varying evolution of inflation risks," Working Paper Series 2600, European Central Bank.
- Rangika Peiris & Minh-Ngoc Tran & Chao Wang & Richard Gerlach, 2024. "Loss-based Bayesian Sequential Prediction of Value at Risk with a Long-Memory and Non-linear Realized Volatility Model," Papers 2408.13588, arXiv.org.
- Hubner, Stefan, 2016. "Topics in nonparametric identification and estimation," Other publications TiSEM 08fce56b-3193-46e0-871b-0, Tilburg University, School of Economics and Management.
- Li, Dan & Clements, Adam & Drovandi, Christopher, 2023. "A Bayesian approach for more reliable tail risk forecasts," Journal of Financial Stability, Elsevier, vol. 64(C).
- Marco Bottone & Lea Petrella & Mauro Bernardi, 2021.
"Unified Bayesian conditional autoregressive risk measures using the skew exponential power distribution,"
Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 1079-1107, September.
- Marco Bottone & Mauro Bernardi & Lea Petrella, 2019. "Unified Bayesian Conditional Autoregressive Risk Measures using the Skew Exponential Power Distribution," Papers 1902.03982, arXiv.org, revised Sep 2019.
- Korobilis, Dimitris, 2015.
"Quantile forecasts of inflation under model uncertainty,"
SIRE Discussion Papers
2015-72, Scottish Institute for Research in Economics (SIRE).
- Korobilis, Dimitris, 2015. "Quantile forecasts of inflation under model uncertainty," MPRA Paper 64341, University Library of Munich, Germany.
- Dimitris Korobilis., 2015. "Quantile forecasts of inflation under model uncertainty," Working Papers 2015_09, Business School - Economics, University of Glasgow.
- Gebka, Bartosz & Wohar, Mark E., 2019. "Stock return distribution and predictability: Evidence from over a century of daily data on the DJIA index," International Review of Economics & Finance, Elsevier, vol. 60(C), pages 1-25.
- Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
- Zijian Zeng & Meng Li, 2020. "Bayesian Median Autoregression for Robust Time Series Forecasting," Papers 2001.01116, arXiv.org, revised Dec 2020.
- Bhattacharya, Indrabati & Ghosal, Subhashis, 2021. "Bayesian multivariate quantile regression using Dependent Dirichlet Process prior," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
- So, Mike K.P. & Chung, Ray S.W., 2015. "Statistical inference for conditional quantiles in nonlinear time series models," Journal of Econometrics, Elsevier, vol. 189(2), pages 457-472.
- Richard Gerlach & Chao Wang, 2016. "Forecasting risk via realized GARCH, incorporating the realized range," Quantitative Finance, Taylor & Francis Journals, vol. 16(4), pages 501-511, April.
- Griffin, Jim E. & Mitrodima, Gelly, 2020. "A Bayesian quantile time series model for asset returns," LSE Research Online Documents on Economics 105610, London School of Economics and Political Science, LSE Library.
- Cathy W. S. Chen & Takaaki Koike & Wei-Hsuan Shau, 2024. "Tail risk forecasting with semi-parametric regression models by incorporating overnight information," Papers 2402.07134, arXiv.org.
- Mehmet Pinar & Thanasis Stengos & M. Ege Yazgan, 2018. "Quantile forecast combination using stochastic dominance," Empirical Economics, Springer, vol. 55(4), pages 1717-1755, December.
- Liu Xiaochun & Luger Richard, 2018. "Markov-switching quantile autoregression: a Gibbs sampling approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(2), pages 1, April.
- Hagfors, Lars Ivar & Bunn, Derek & Kristoffersen, Eline & Staver, Tiril Toftdahl & Westgaard, Sjur, 2016. "Modeling the UK electricity price distributions using quantile regression," Energy, Elsevier, vol. 102(C), pages 231-243.
- Gatfaoui, Hayette, 2017.
"Equity market information and credit risk signaling: A quantile cointegrating regression approach,"
Economic Modelling, Elsevier, vol. 64(C), pages 48-59.
- Hayette Gatfaoui, 2017. "Equity market information and credit risk signaling: A quantile cointegrating regression approach," Post-Print hal-01745285, HAL.
- Mateusz Buczyński & Marcin Chlebus, 2019. "Old-fashioned parametric models are still the best. A comparison of Value-at-Risk approaches in several volatility states," Working Papers 2019-12, Faculty of Economic Sciences, University of Warsaw.
- Yuta Kurose & Yasuhiro Omori, 2012. "Bayesian Analysis of Time-Varying Quantiles Using a Smoothing Spline," CIRJE F-Series CIRJE-F-845, CIRJE, Faculty of Economics, University of Tokyo.
- CHEN, Cathy W.S. & WENG, Monica M.C. & WATANABE, Toshiaki & 渡部, 渡部, 2015. "Employing Bayesian Forecasting of Value-at-Risk to Determine an Appropriate Model for Risk Management," Discussion paper series HIAS-E-16, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
- Chi Ming Wong & Lei Lam Olivia Ting, 2016. "A Quantile Regression Approach to the Multiple Period Value at Risk Estimation," Journal of Economics and Management, College of Business, Feng Chia University, Taiwan, vol. 12(1), pages 1-35, February.
- Tomohiro Ando & Jushan Bai, 2020.
"Quantile Co-Movement in Financial Markets: A Panel Quantile Model With Unobserved Heterogeneity,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 266-279, January.
- Ando, Tomohiro & Bai, Jushan, 2018. "Quantile co-movement in financial markets: A panel quantile model with unobserved heterogeneity," MPRA Paper 88765, University Library of Munich, Germany.
- Cathy Chen & Richard Gerlach, 2013. "Semi-parametric quantile estimation for double threshold autoregressive models with heteroskedasticity," Computational Statistics, Springer, vol. 28(3), pages 1103-1131, June.
- Storti, Giuseppe & Wang, Chao, 2022.
"Nonparametric expected shortfall forecasting incorporating weighted quantiles,"
International Journal of Forecasting, Elsevier, vol. 38(1), pages 224-239.
- Giuseppe Storti & Chao Wang, 2020. "Nonparametric Expected Shortfall Forecasting Incorporating Weighted Quantiles," Papers 2005.04868, arXiv.org, revised Mar 2021.
- Xiaochun Liu, 2016.
"Markov switching quantile autoregression,"
Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(4), pages 356-395, November.
- Liu, Xiaochun, 2013. "Markov-Switching Quantile Autoregression," MPRA Paper 55800, University Library of Munich, Germany.
- Mauro Bernardi & Ghislaine Gayraud & Lea Petrella, 2013. "Bayesian inference for CoVaR," Papers 1306.2834, arXiv.org, revised Nov 2013.
- Jabed H. Tomal & Hafizur Rahman, 2021. "A Bayesian piecewise linear model for the detection of breakpoints in housing prices," METRON, Springer;Sapienza Università di Roma, vol. 79(3), pages 361-381, December.
- Zeng, Zijian & Li, Meng, 2021. "Bayesian median autoregression for robust time series forecasting," International Journal of Forecasting, Elsevier, vol. 37(2), pages 1000-1010.
- Paraschiv, Florentina & Bunn, Derek & Westgaard, Sjur, 2016. "Estimation and Application of Fully Parametric Multifactor Quantile Regression with Dynamic Coefficients," Working Papers on Finance 1607, University of St. Gallen, School of Finance.
- Ammy-Driss, Ayoub & Garcin, Matthieu, 2023. "Efficiency of the financial markets during the COVID-19 crisis: Time-varying parameters of fractional stable dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
- Sonia Benito Muela & Carmen López-Martín & Mª Ángeles Navarro, 2017. "The Role of the Skewed Distributions in the Framework of Extreme Value Theory (EVT)," International Business Research, Canadian Center of Science and Education, vol. 10(11), pages 88-102, November.
- Korobilis, Dimitris, 2017. "Quantile regression forecasts of inflation under model uncertainty," International Journal of Forecasting, Elsevier, vol. 33(1), pages 11-20.
- Jiawen Luo & Shengjie Fu & Oguzhan Cepni & Rangan Gupta, 2024. "Climate Risks and Forecastability of US Inflation: Evidence from Dynamic Quantile Model Averaging," Working Papers 202420, University of Pretoria, Department of Economics.
- Richard Gerlach & Zudi Lu & Hai Huang, 2013. "Exponentially Smoothing the Skewed Laplace Distribution for Value‐at‐Risk Forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 534-550, September.
- Derek Bunn, Arne Andresen, Dipeng Chen, Sjur Westgaard, 2016. "Analysis and Forecasting of Electricty Price Risks with Quantile Factor Models," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
- Mitrodima, Gelly & Oberoi, Jaideep, 2024. "CAViaR models for Value-at-Risk and Expected Shortfall with long range dependency features," LSE Research Online Documents on Economics 120880, London School of Economics and Political Science, LSE Library.
- Chao Wang & Richard Gerlach, 2019. "Semi-parametric Realized Nonlinear Conditional Autoregressive Expectile and Expected Shortfall," Papers 1906.09961, arXiv.org.
- Federico Gatta & Fabrizio Lillo & Piero Mazzarisi, 2024. "CAESar: Conditional Autoregressive Expected Shortfall," Papers 2407.06619, arXiv.org.
- Huarng, Kun-Huang & Yu, Tiffany Hui-Kuang, 2014. "A new quantile regression forecasting model," Journal of Business Research, Elsevier, vol. 67(5), pages 779-784.
- Vegard Høghaug Larsen & Nicolò Maffei-Faccioli & Laura Pagenhardt, 2023. "Where do they care? The ECB in the media and inflation expectations," Working Papers No 04/2023, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Wilson Ye Chen & Gareth W. Peters & Richard H. Gerlach & Scott A. Sisson, 2017. "Dynamic Quantile Function Models," Papers 1707.02587, arXiv.org, revised May 2021.
- Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
- Richard Gerlach & Chao Wang, 2018. "Semi-parametric Dynamic Asymmetric Laplace Models for Tail Risk Forecasting, Incorporating Realized Measures," Papers 1805.08653, arXiv.org.
- Liu, Xiaochun & Luger, Richard, 2015. "Unfolded GARCH models," Journal of Economic Dynamics and Control, Elsevier, vol. 58(C), pages 186-217.