IDEAS home Printed from https://ideas.repec.org/r/taf/jnlasa/v108y2013i503p1105-1119.html
   My bibliography  Save this item

From Depth to Local Depth: A Focus on Centrality

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Daniel Kosiorowski & Dominik Mielczarek & Jerzy P. Rydlewski & Małgorzata Snarska, 2018. "Generalized Exponential Smoothing In Prediction Of Hierarchical Time Series," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 331-350, June.
  2. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
  3. Laniado Rodas, Henry, 2017. "Multivariate outlier detection based on a robust Mahalanobis distance with shrinkage estimators," DES - Working Papers. Statistics and Econometrics. WS 24613, Universidad Carlos III de Madrid. Departamento de Estadística.
  4. Daniel Kosiorowski & Jerzy P. Rydlewski & Ma{l}gorzata Snarska, 2016. "Detecting a Structural Change in Functional Time Series Using Local Wilcoxon Statistic," Papers 1604.03776, arXiv.org, revised Oct 2019.
  5. Maciej Jagódka & Małgorzata Snarska, 2023. "Should We Continue EU Cohesion Policy? The Dilemma of Uneven Development of Polish Regions," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 165(3), pages 901-917, February.
  6. Kosiorowska Ewa & Kosiorowski Daniel & Zawadzki Zygmunt, 2015. "Evaluation of the Fourth Millennium Development Goal Realisation using Robust and Nonparametric Tools offered by a Data Depth Concept," Folia Oeconomica Stetinensia, Sciendo, vol. 15(1), pages 34-52, June.
  7. Pavel Boček & Miroslav Šiman, 2017. "On weighted and locally polynomial directional quantile regression," Computational Statistics, Springer, vol. 32(3), pages 929-946, September.
  8. Elisa Cabana & Rosa E. Lillo & Henry Laniado, 2021. "Multivariate outlier detection based on a robust Mahalanobis distance with shrinkage estimators," Statistical Papers, Springer, vol. 62(4), pages 1583-1609, August.
  9. Daniel Hlubinka & Lukáš Kotík & Miroslav Šiman, 2022. "Multivariate quantiles with both overall and directional probability interpretation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1586-1604, December.
  10. Daniel Kosiorowski, 2015. "Two procedures for robust monitoring of probability distributions of economic data stream induced by depth functions," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 25(1), pages 55-79.
  11. Davy Paindaveine & Germain Van Bever, 2015. "Discussion of “Multivariate Functional Outlier Detection”, by Mia Hubert, Peter Rousseeuw and Pieter Segaert," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 223-231, July.
  12. Davy Paindaveine & Germain Van Bever, 2017. "Halfspace Depths for Scatter, Concentration and Shape Matrices," Working Papers ECARES ECARES 2017-19, ULB -- Universite Libre de Bruxelles.
  13. Kevin Leckey & Dennis Malcherczyk & Melanie Horn & Christine H. Müller, 2023. "Simple powerful robust tests based on sign depth," Statistical Papers, Springer, vol. 64(3), pages 857-882, June.
  14. repec:hal:spmain:info:hdl:2441/64itsev5509q8aa5mrbhi0g0b6 is not listed on IDEAS
  15. repec:spo:wpmain:info:hdl:2441/64itsev5509q8aa5mrbhi0g0b6 is not listed on IDEAS
  16. Daniel Kosiorowski & Jerzy P. Rydlewski, 2020. "Centrality-oriented causality. A study of EU agricultural subsidies and digital developement in Poland," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 30(3), pages 47-63.
  17. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
  18. repec:hal:spmain:info:hdl:2441/3qnaslliat80pbqa8t90240unj is not listed on IDEAS
  19. Subhajit Dutta & Anil K. Ghosh, 2017. "Discussion," International Statistical Review, International Statistical Institute, vol. 85(1), pages 40-43, April.
  20. Kotík, Lukáš & Hlubinka, Daniel, 2017. "A weighted localization of halfspace depth and its properties," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 53-69.
  21. Oleksii Pokotylo & Karl Mosler, 2019. "Classification with the pot–pot plot," Statistical Papers, Springer, vol. 60(3), pages 903-931, June.
  22. Daniel Kosiorowski & Jerzy P. Rydlewski & Małgorzata Snarska, 2019. "Detecting a structural change in functional time series using local Wilcoxon statistic," Statistical Papers, Springer, vol. 60(5), pages 1677-1698, October.
  23. Kosiorowski Daniel & Mielczarek Dominik & Rydlewski Jerzy P. & Snarska Małgorzata, 2018. "Generalized Exponential Smoothing In Prediction Of Hierarchical Time Series," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 331-350, June.
  24. Daniel Kosiorowski & Dominik Mielczarek & Jerzy P. Rydlewski, 2017. "Aggregated moving functional median in robust prediction of hierarchical functional time series - an application to forecasting web portal users behaviors," Papers 1710.02669, arXiv.org, revised Jul 2018.
  25. Kosiorowski Daniel & Jerzy P. Rydlewski, 2019. "Centrality-oriented Causality -- A Study of EU Agricultural Subsidies and Digital Developement in Poland," Papers 1908.11099, arXiv.org, revised Sep 2019.
  26. Lucas Fernandez-Piana & Marcela Svarc, 2022. "An integrated local depth measure," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(2), pages 175-197, June.
  27. Rainer Dyckerhoff & Christophe Ley & Davy Paindaveine, 2015. "Depth-based runs tests for bivariate central symmetry," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(5), pages 917-941, October.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.