IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/24613.html
   My bibliography  Save this paper

Multivariate outlier detection based on a robust Mahalanobis distance with shrinkage estimators

Author

Listed:
  • Laniado Rodas, Henry

Abstract

A collection of methods for multivariate outlier detection based on a robust Mahalanobis distance is proposed. The procedure consists on different combinations of robust estimates for location and covariance matrix based on shrinkage. The performance of our proposal is illustrated, through the comparison to other techniques from the literature, in a simulation study. The resulting high correct classification rates and low false classification rates in the vast majority of cases, and also the good computational times shows the goodness of our proposal. The performance is also illustrated with a real dataset example and some conclusions are established.

Suggested Citation

  • Laniado Rodas, Henry, 2017. "Multivariate outlier detection based on a robust Mahalanobis distance with shrinkage estimators," DES - Working Papers. Statistics and Econometrics. WS 24613, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:24613
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/144dfb19-f1fe-4a1e-b0d3-11d8ca063958/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. DeMiguel, Victor & Martin-Utrera, Alberto & Nogales, Francisco J., 2013. "Size matters: Optimal calibration of shrinkage estimators for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3018-3034.
    2. Michael Falk, 1997. "On Mad and Comedians," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 49(4), pages 615-644, December.
    3. Davy Paindaveine & Germain Van bever, 2013. "From Depth to Local Depth: A Focus on Centrality," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 1105-1119, September.
    4. Arup Bose & Probal Chaudhuri, 1993. "On the dispersion of multivariate median," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(3), pages 541-550, September.
    5. Arup Bose, 1995. "Estimating the asymptotic dispersion of theL 1 median," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(2), pages 267-271, June.
    6. Dodge, Yadolah, 1987. "An introduction to L1-norm based statistical data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 5(4), pages 239-253, September.
    7. Cator, Eric A. & Lopuhaä, Hendrik P., 2010. "Asymptotic expansion of the minimum covariance determinant estimators," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2372-2388, November.
    8. Tarr, G. & Müller, S. & Weber, N.C., 2016. "Robust estimation of precision matrices under cellwise contamination," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 404-420.
    9. Chen, Song Xi & Qin, Yingli, 2010. "A Two Sample Test for High Dimensional Data with Applications to Gene-set Testing," MPRA Paper 59642, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisa Cabana & Rosa E. Lillo & Henry Laniado, 2021. "Multivariate outlier detection based on a robust Mahalanobis distance with shrinkage estimators," Statistical Papers, Springer, vol. 62(4), pages 1583-1609, August.
    2. Li, Weiming & Xu, Yangchang, 2022. "Asymptotic properties of high-dimensional spatial median in elliptical distributions with application," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    3. Ding, Wenliang & Shu, Lianjie & Gu, Xinhua, 2023. "A robust Glasso approach to portfolio selection in high dimensions," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 22-37.
    4. Falk, Michael, 1998. "A Note on the Comedian for Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 306-317, November.
    5. Yata, Kazuyoshi & Aoshima, Makoto, 2013. "PCA consistency for the power spiked model in high-dimensional settings," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 334-354.
    6. Saha, Enakshi & Sarkar, Soham & Ghosh, Anil K., 2017. "Some high-dimensional one-sample tests based on functions of interpoint distances," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 83-95.
    7. Arturas Juodis & Simon Reese, 2018. "The Incidental Parameters Problem in Testing for Remaining Cross-section Correlation," Papers 1810.03715, arXiv.org, revised Feb 2021.
    8. Kosiorowski Daniel & Mielczarek Dominik & Rydlewski Jerzy P. & Snarska Małgorzata, 2018. "Generalized Exponential Smoothing In Prediction Of Hierarchical Time Series," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 331-350, June.
    9. Qiang Sun & Hongtu Zhu & Yufeng Liu & Joseph G. Ibrahim, 2015. "SPReM: Sparse Projection Regression Model For High-Dimensional Linear Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 289-302, March.
    10. Yamada, Takayuki & Himeno, Tetsuto, 2015. "Testing homogeneity of mean vectors under heteroscedasticity in high-dimension," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 7-27.
    11. Nicolas Städler & Sach Mukherjee, 2017. "Two-sample testing in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 225-246, January.
    12. Daniel Kosiorowski & Jerzy P. Rydlewski & Małgorzata Snarska, 2019. "Detecting a structural change in functional time series using local Wilcoxon statistic," Statistical Papers, Springer, vol. 60(5), pages 1677-1698, October.
    13. Qiu, Tao & Zhang, Qintong & Fang, Yuanyuan & Xu, Wangli, 2024. "Testing homogeneity in high dimensional data through random projections," Journal of Multivariate Analysis, Elsevier, vol. 200(C).
    14. Gianluca De Nard & Olivier Ledoit & Michael Wolf, 2018. "Factor models for portfolio selection in large dimensions: the good, the better and the ugly," ECON - Working Papers 290, Department of Economics - University of Zurich, revised Dec 2018.
    15. Oliveira, Aurelio R. L. & Nascimento, Mario A. & Lyra, Christiano, 2000. "Efficient implementation and benchmark of interior point methods for the polynomial L1 fitting problem," Computational Statistics & Data Analysis, Elsevier, vol. 35(2), pages 119-135, December.
    16. Zhang, Jie & Pan, Meng, 2016. "A high-dimension two-sample test for the mean using cluster subspaces," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 87-97.
    17. Jamshid Namdari & Debashis Paul & Lili Wang, 2021. "High-Dimensional Linear Models: A Random Matrix Perspective," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 645-695, August.
    18. Yukun Liu & Changliang Zou & Zhaojun Wang, 2013. "Calibration of the empirical likelihood for high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 529-550, June.
    19. repec:spo:wpmain:info:hdl:2441/3qnaslliat80pbqa8t90240unj is not listed on IDEAS
    20. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
    21. Peng, Liang & Qi, Yongcheng & Wang, Ruodu, 2014. "Empirical likelihood test for high dimensional linear models," Statistics & Probability Letters, Elsevier, vol. 86(C), pages 85-90.

    More about this item

    Keywords

    outlier detection;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:24613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.