IDEAS home Printed from https://ideas.repec.org/r/spr/scient/v97y2013i2d10.1007_s11192-013-1076-7.html
   My bibliography  Save this item

A co-word analysis of library and information science in China

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Xiaoguang Wang & Hongyu Wang & Han Huang, 2021. "Evolutionary exploration and comparative analysis of the research topic networks in information disciplines," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(6), pages 4991-5017, June.
  2. Ping Liu & Qiong Wu & Xiangming Mu & Kaipeng Yu & Yiting Guo, 2015. "Detecting the intellectual structure of library and information science based on formal concept analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(3), pages 737-762, September.
  3. Huang, Lu & Chen, Xiang & Ni, Xingxing & Liu, Jiarun & Cao, Xiaoli & Wang, Changtian, 2021. "Tracking the dynamics of co-word networks for emerging topic identification," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
  4. María Pinto & Rosaura Fernández-Pascual & David Caballero-Mariscal & Dora Sales & David Guerrero & Alejandro Uribe, 2019. "Scientific production on mobile information literacy in higher education: a bibliometric analysis (2006–2017)," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 57-85, July.
  5. María Pinto & Rosaura Fernández-Pascual & David Caballero-Mariscal & Dora Sales, 2020. "Information literacy trends in higher education (2006–2019): visualizing the emerging field of mobile information literacy," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1479-1510, August.
  6. Hailin Li & Fengxiao Fan & Yan Sun & Weigang Wang, 2022. "Low-Carbon Action in Full Swing: A Study on Satisfaction with Wise Medical Development," IJERPH, MDPI, vol. 19(8), pages 1-17, April.
  7. Jiang, Hanchen & Qiang, Maoshan & Lin, Peng, 2016. "A topic modeling based bibliometric exploration of hydropower research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 226-237.
  8. Babajide Abubakr Muritala & Maria-Victoria Sánchez-Rebull & Ana-Beatriz Hernández-Lara, 2020. "A Bibliometric Analysis of Online Reviews Research in Tourism and Hospitality," Sustainability, MDPI, vol. 12(23), pages 1-18, November.
  9. Jia-Yen Huang & Hung-Tu Hsu, 2017. "Technology–function matrix based network analysis of cloud computing," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 17-44, October.
  10. Alexey Lyutov & Yilmaz Uygun & Marc-Thorsten Hütt, 2021. "Machine learning misclassification of academic publications reveals non-trivial interdependencies of scientific disciplines," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1173-1186, February.
  11. Chunmei Gan & Weijun Wang, 2015. "Research characteristics and status on social media in China: A bibliometric and co-word analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(2), pages 1167-1182, November.
  12. Claudia Patricia Maldonado-Erazo & José Álvarez-García & María de la Cruz del Río-Rama & Amador Durán-Sánchez, 2021. "Scientific Mapping on the Impact of Climate Change on Cultural and Natural Heritage: A Systematic Scientometric Analysis," Land, MDPI, vol. 10(1), pages 1-19, January.
  13. Sung Kim & Derek Hansen & Richard Helps, 2018. "Computing research in the academy: insights from theses and dissertations," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(1), pages 135-158, January.
  14. Qi Liao & Ting Li, 2016. "Effective network management via dynamic network anomaly visualization," International Journal of Network Management, John Wiley & Sons, vol. 26(6), pages 461-491, November.
  15. Zheng Xie & Yanwu Li & Zhemin Li, 2020. "Assessing and predicting the quality of research master’s theses: an application of scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 953-972, August.
  16. Noriyuki Morichika & Sotaro Shibayama, 2016. "Use of dissertation data in science policy research," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(1), pages 221-241, July.
  17. Chien Hsiang Liao & Mu-Yen Chen, 2018. "Exploring knowledge patterns of library and information science journals within the field: a citation analysis from 2009 to 2016," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1991-2008, December.
  18. Seyed Mohammad Jafar Jalali & Han Woo Park, 2018. "State of the art in business analytics: themes and collaborations," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(2), pages 627-633, March.
  19. Guo Chen & Lu Xiao & Chang-ping Hu & Xue-qin Zhao, 2015. "Identifying the research focus of Library and Information Science institutions in China with institution-specific keywords," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(2), pages 707-724, May.
  20. María de la Cruz del Río-Rama & Claudia Patricia Maldonado-Erazo & José Álvarez-García & Amador Durán-Sánchez, 2020. "Cultural and Natural Resources in Tourism Island: Bibliometric Mapping," Sustainability, MDPI, vol. 12(2), pages 1-26, January.
  21. Chaker Jebari & Enrique Herrera-Viedma & Manuel Jesus Cobo, 2021. "The use of citation context to detect the evolution of research topics: a large-scale analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2971-2989, April.
  22. Seyedmohammadreza Hosseini & Hamed Baziyad & Rasoul Norouzi & Sheida Jabbedari Khiabani & Győző Gidófalvi & Amir Albadvi & Abbas Alimohammadi & Seyedehsan Seyedabrishami, 2021. "Mapping the intellectual structure of GIS-T field (2008–2019): a dynamic co-word analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2667-2688, April.
  23. Jia-Yen Huang & Rong-Chang Chen, 2019. "Exploring the intellectual structure of cloud patents using non-exhaustive overlaps," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 739-769, November.
  24. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Zhang, Huiling & Pang, Hongshen, 2021. "Multidimensional Scientometric indicators for the detection of emerging research topics," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
  25. Xu, Shuo & Hao, Liyuan & An, Xin & Yang, Guancan & Wang, Feifei, 2019. "Emerging research topics detection with multiple machine learning models," Journal of Informetrics, Elsevier, vol. 13(4).
  26. María del Pilar Casado-Belmonte & María de las Mercedes Capobianco-Uriarte & Rubén Martínez-Alonso & María J. Martínez-Romero, 2021. "Delineating the Path of Family Firm Innovation: Mapping the Scientific Structure," Review of Managerial Science, Springer, vol. 15(8), pages 2455-2499, November.
  27. Marie Katsurai & Shunsuke Ono, 2019. "TrendNets: mapping emerging research trends from dynamic co-word networks via sparse representation," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1583-1598, December.
  28. Christian Weismayer & Ilona Pezenka, 2017. "Identifying emerging research fields: a longitudinal latent semantic keyword analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1757-1785, December.
  29. Bei-Ni Yan & Tian-Shyug Lee & Tsung-Pei Lee, 2015. "Analysis of research papers on E-commerce (2000–2013): based on a text mining approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 403-417, October.
  30. Rui Yang & Guoming Du & Ziwei Duan & Mengjin Du & Xin Miao & Yanhong Tang, 2020. "Knowledge System Analysis on Emergency Management of Public Health Emergencies," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
  31. Hao Wang & Sanhong Deng & Xinning Su, 2016. "A study on construction and analysis of discipline knowledge structure of Chinese LIS based on CSSCI," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1725-1759, December.
  32. E. M. Murgado-Armenteros & M. Gutiérrez-Salcedo & F. J. Torres-Ruiz & M. J. Cobo, 2015. "Analysing the conceptual evolution of qualitative marketing research through science mapping analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 519-557, January.
  33. Zhu, Lin & Cunningham, Scott W., 2022. "Unveiling the knowledge structure of technological forecasting and social change (1969–2020) through an NMF-based hierarchical topic model," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
  34. Yu, Qi & Ding, Ying & Song, Min & Song, Sungjeon & Liu, Jianhua & Zhang, Bin, 2015. "Tracing database usage: Detecting main paths in database link networks," Journal of Informetrics, Elsevier, vol. 9(1), pages 1-15.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.