IDEAS home Printed from https://ideas.repec.org/r/spr/alstar/v95y2011i1p59-91.html
   My bibliography  Save this item

Useful models for time series of counts or simply wrong ones?

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Shengqi Tian & Dehui Wang & Shuai Cui, 2020. "A seasonal geometric INAR process based on negative binomial thinning operator," Statistical Papers, Springer, vol. 61(6), pages 2561-2581, December.
  2. Chen, Zezhun Chen & Dassios, Angelos & Tzougas, George, 2023. "A first order binomial mixed poisson integer-valued autoregressive model with serially dependent innovations," LSE Research Online Documents on Economics 112222, London School of Economics and Political Science, LSE Library.
  3. Christian H. Weiß, 2018. "Goodness-of-fit testing of a count time series’ marginal distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(6), pages 619-651, August.
  4. Christian H. Weiß & Esmeralda Gonçalves & Nazaré Mendes Lopes, 2017. "Testing the compounding structure of the CP-INARCH model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(5), pages 571-603, July.
  5. Robert C. Jung & Stephanie Glaser, 2022. "Modelling and Diagnostics of Spatially Autocorrelated Counts," Econometrics, MDPI, vol. 10(3), pages 1-17, September.
  6. Wooi Chen Khoo & Seng Huat Ong & Atanu Biswas, 2017. "Modeling time series of counts with a new class of INAR(1) model," Statistical Papers, Springer, vol. 58(2), pages 393-416, June.
  7. Stephanie Glaser & Robert C. Jung & Karsten Schweikert, 2022. "Spatial panel count data: modeling and forecasting of urban crimes," Journal of Spatial Econometrics, Springer, vol. 3(1), pages 1-29, December.
  8. Lívio Tito & Bourguignon Marcelo & Nascimento Fernando, 2020. "INAR(1) Processes with Inflated-parameter Generalized Power Series Innovations," Journal of Time Series Econometrics, De Gruyter, vol. 12(2), pages 1-27, July.
  9. Šárka Hudecová & Marie Hušková & Simos G. Meintanis, 2017. "Tests for Structural Changes in Time Series of Counts," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 843-865, December.
  10. Boris Aleksandrov & Christian H. Weiß, 2020. "Testing the dispersion structure of count time series using Pearson residuals," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(3), pages 325-361, September.
  11. Marcelo Bourguignon & Christian H. Weiß, 2017. "An INAR(1) process for modeling count time series with equidispersion, underdispersion and overdispersion," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 847-868, December.
  12. Weiß Christian & Scherer Lukas & Aleksandrov Boris & Feld Martin, 2020. "Checking Model Adequacy for Count Time Series by Using Pearson Residuals," Journal of Time Series Econometrics, De Gruyter, vol. 12(1), pages 1-15, January.
  13. Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2019. "Statistical and economic evaluation of time series models for forecasting arrivals at call centers," Empirical Economics, Springer, vol. 57(3), pages 923-955, September.
  14. Annika Homburg & Christian H. Weiß & Gabriel Frahm & Layth C. Alwan & Rainer Göb, 2021. "Analysis and Forecasting of Risk in Count Processes," JRFM, MDPI, vol. 14(4), pages 1-25, April.
  15. Chen, Cathy W.S. & Lee, Sangyeol, 2016. "Generalized Poisson autoregressive models for time series of counts," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 51-67.
  16. Christian H. Weiß & Sebastian Schweer, 2015. "Detecting overdispersion in INARCH(1) processes," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(3), pages 281-297, August.
  17. Moizes Melo & Airlane Alencar, 2020. "Conway–Maxwell–Poisson Autoregressive Moving Average Model for Equidispersed, Underdispersed, and Overdispersed Count Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 830-857, November.
  18. Scotto, Manuel G. & Weiß, Christian H. & Silva, Maria Eduarda & Pereira, Isabel, 2014. "Bivariate binomial autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 233-251.
  19. Andrea BASTIANIN & Marzio GALEOTTI & Matteo MANERA, 2011. "Forecast evaluation in call centers: combined forecasts, flexible loss functions and economic criteria," Departmental Working Papers 2011-08, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
  20. Ole E. Barndorff-Nielsen & Asger Lunde & Neil Shephard & Almut E.D. Veraart, 2014. "Integer-valued Trawl Processes: A Class of Stationary Infinitely Divisible Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 693-724, September.
  21. Jiwon Kang & Sangyeol Lee, 2014. "Parameter Change Test for Poisson Autoregressive Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1136-1152, December.
  22. Veraart, Almut E.D., 2019. "Modeling, simulation and inference for multivariate time series of counts using trawl processes," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 110-129.
  23. Christian Weiß & Hee-Young Kim, 2013. "Parameter estimation for binomial AR(1) models with applications in finance and industry," Statistical Papers, Springer, vol. 54(3), pages 563-590, August.
  24. Kai Yang & Luan Zhao & Qian Hu & Wenshan Wang, 2024. "Bayesian Quantile Regression Analysis for Bivariate Vector Autoregressive Models with an Application to Financial Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 1939-1963, October.
  25. Andrea BASTIANIN & Marzio GALEOTTI & Matteo MANERA, 2011. "Forecast evaluation in call centers: combined forecasts, flexible loss functions and economic criteria," Departmental Working Papers 2011-08, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
  26. Wagner Barreto-Souza, 2019. "Mixed Poisson INAR(1) processes," Statistical Papers, Springer, vol. 60(6), pages 2119-2139, December.
  27. Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2011. "Forecast Evaluation in Call Centers: Combined Forecasts, Flexible Loss Functions and Economic Criteria," Working Papers 20110301, Università degli Studi di Milano-Bicocca, Dipartimento di Statistica.
  28. Dunsmuir, William T. M. & Scott, David J., 2015. "The glarma Package for Observation-Driven Time Series Regression of Counts," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i07).
  29. Li, Qi & Lian, Heng & Zhu, Fukang, 2016. "Robust closed-form estimators for the integer-valued GARCH (1,1) model," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 209-225.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.