IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v10y2022i3p31-d913362.html
   My bibliography  Save this article

Modelling and Diagnostics of Spatially Autocorrelated Counts

Author

Listed:
  • Robert C. Jung

    (Institut für Volkswirtschaftslehre (520K), Computational Science Lab (CSL) Hohenheim, Universität Hohenheim, 70593 Stuttgart, Germany)

  • Stephanie Glaser

    (Institut für Volkswirtschaftslehre (520K), Universität Hohenheim, 70593 Stuttgart, Germany)

Abstract

This paper proposes a new spatial lag regression model which addresses global spatial autocorrelation arising from cross-sectional dependence between counts. Our approach offers an intuitive interpretation of the spatial correlation parameter as a measurement of the impact of neighbouring observations on the conditional expectation of the counts. It allows for flexible likelihood-based inference based on different distributional assumptions using standard numerical procedures. In addition, we advocate the use of data-coherent diagnostic tools in spatial count regression models. The application revisits a data set on the location choice of single unit start-up firms in the manufacturing industry in the US.

Suggested Citation

  • Robert C. Jung & Stephanie Glaser, 2022. "Modelling and Diagnostics of Spatially Autocorrelated Counts," Econometrics, MDPI, vol. 10(3), pages 1-17, September.
  • Handle: RePEc:gam:jecnmx:v:10:y:2022:i:3:p:31-:d:913362
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/10/3/31/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/10/3/31/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert Jung & A. Tremayne, 2011. "Useful models for time series of counts or simply wrong ones?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(1), pages 59-91, March.
    2. Rebekka E. Apardian & Oleg Smirnov, 2020. "An analysis of pedestrian crashes using a spatial count data model," Papers in Regional Science, Wiley Blackwell, vol. 99(5), pages 1317-1338, October.
    3. Claudia Czado & Tilmann Gneiting & Leonhard Held, 2009. "Predictive Model Assessment for Count Data," Biometrics, The International Biometric Society, vol. 65(4), pages 1254-1261, December.
    4. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    5. Isabel Proença & Ludgero Glórias, 2021. "Revisiting the Spatial Autoregressive Exponential Model for Counts and Other Nonnegative Variables, with Application to the Knowledge Production Function," Sustainability, MDPI, vol. 13(5), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James Mitchell & Martin Weale, 2023. "Censored density forecasts: Production and evaluation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(5), pages 714-734, August.
    2. Diebold, Francis X. & Shin, Minchul & Zhang, Boyuan, 2023. "On the aggregation of probability assessments: Regularized mixtures of predictive densities for Eurozone inflation and real interest rates," Journal of Econometrics, Elsevier, vol. 237(2).
    3. Antonio Bracale & Pasquale De Falco, 2015. "An Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power," Energies, MDPI, vol. 8(9), pages 1-22, September.
    4. Fabian Krüger & Sebastian Lerch & Thordis Thorarinsdottir & Tilmann Gneiting, 2021. "Predictive Inference Based on Markov Chain Monte Carlo Output," International Statistical Review, International Statistical Institute, vol. 89(2), pages 274-301, August.
    5. Wei Wei & Leonhard Held, 2014. "Calibration tests for count data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 787-805, December.
    6. Rossi, Barbara & Ganics, Gergely & Sekhposyan, Tatevik, 2020. "From Fixed-event to Fixed-horizon Density Forecasts: Obtaining Measures of Multi-horizon Uncertainty from Survey Density Foreca," CEPR Discussion Papers 14267, C.E.P.R. Discussion Papers.
    7. Boris Aleksandrov & Christian H. Weiß, 2020. "Testing the dispersion structure of count time series using Pearson residuals," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(3), pages 325-361, September.
    8. Li, Qi & Lian, Heng & Zhu, Fukang, 2016. "Robust closed-form estimators for the integer-valued GARCH (1,1) model," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 209-225.
    9. Gergely Ganics & Barbara Rossi & Tatevik Sekhposyan, 2019. "From fixed-event to fixed-horizon density forecasts: obtaining measures of multi-horizon uncertainty from survey density forecasts," Working Papers 1947, Banco de España.
    10. Stephanie Glaser & Robert C. Jung & Karsten Schweikert, 2022. "Spatial panel count data: modeling and forecasting of urban crimes," Journal of Spatial Econometrics, Springer, vol. 3(1), pages 1-29, December.
    11. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    12. Moizes Melo & Airlane Alencar, 2020. "Conway–Maxwell–Poisson Autoregressive Moving Average Model for Equidispersed, Underdispersed, and Overdispersed Count Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 830-857, November.
    13. David Harris & Gael M. Martin & Indeewara Perera & Don S. Poskitt, 2017. "Construction and visualization of optimal confidence sets for frequentist distributional forecasts," Monash Econometrics and Business Statistics Working Papers 9/17, Monash University, Department of Econometrics and Business Statistics.
    14. Kolassa, Stephan, 2016. "Evaluating predictive count data distributions in retail sales forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 788-803.
    15. Ng, Jason & Forbes, Catherine S. & Martin, Gael M. & McCabe, Brendan P.M., 2013. "Non-parametric estimation of forecast distributions in non-Gaussian, non-linear state space models," International Journal of Forecasting, Elsevier, vol. 29(3), pages 411-430.
    16. Weiß Christian & Scherer Lukas & Aleksandrov Boris & Feld Martin, 2020. "Checking Model Adequacy for Count Time Series by Using Pearson Residuals," Journal of Time Series Econometrics, De Gruyter, vol. 12(1), pages 1-15, January.
    17. László Martinek, 2019. "Analysis of Stochastic Reserving Models By Means of NAIC Claims Data," Risks, MDPI, vol. 7(2), pages 1-27, June.
    18. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    19. González-Rivera, Gloria & Sun, Yingying, 2017. "Density forecast evaluation in unstable environments," International Journal of Forecasting, Elsevier, vol. 33(2), pages 416-432.
    20. Wolfgang Polasek, 2013. "Forecast Evaluations for Multiple Time Series: A Generalized Theil Decomposition," Working Paper series 23_13, Rimini Centre for Economic Analysis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:10:y:2022:i:3:p:31-:d:913362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.