IDEAS home Printed from https://ideas.repec.org/r/sce/scecf1/108.html
   My bibliography  Save this item

Volatility

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Hillebrand, Eric & Schnabl, Gunther & Ulu, Yasemin, 2009. "Japanese foreign exchange intervention and the yen-to-dollar exchange rate: A simultaneous equations approach using realized volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(3), pages 490-505, July.
  2. T. Di Matteo & T. Aste & M. M. Dacorogna, 2003. "Using the Scaling Analysis to Characterize Financial Markets," Papers cond-mat/0302434, arXiv.org.
  3. Márcio Gomes Pinto Garcia & Marcelo Cunha Medeiros & Francisco Eduardo de Luna e Almeida Santos, 2014. "Economic gains of realized volatility in the Brazilian stock market," Brazilian Review of Finance, Brazilian Society of Finance, vol. 12(3), pages 319-349.
  4. Jean-Philippe Bouchaud & Julien Kockelkoren & Marc Potters, 2006. "Random walks, liquidity molasses and critical response in financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 115-123.
  5. Stanley, H.Eugene, 2003. "Statistical physics and economic fluctuations: do outliers exist?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 318(1), pages 279-292.
  6. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
  7. Jaume Masoliver & Josep Perello, 2006. "Multiple time scales and the exponential Ornstein-Uhlenbeck stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 6(5), pages 423-433.
  8. Cipollini, Fabrizio & Gallo, Giampiero M., 2019. "Modeling Euro STOXX 50 volatility with common and market-specific components," Econometrics and Statistics, Elsevier, vol. 11(C), pages 22-42.
  9. Mihaela Craioveanu & Eric Hillebrand, 2012. "Why It Is Ok To Use The Har-Rv(1,5,21) Model," Working Papers 1201, University of Central Missouri, Department of Economics & Finance, revised Aug 2012.
  10. Stanley, H.E. & Gabaix, Xavier & Gopikrishnan, Parameswaran & Plerou, Vasiliki, 2007. "Economic fluctuations and statistical physics: Quantifying extremely rare and less rare events in finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 286-301.
  11. Lux, Thomas, 2008. "Stochastic behavioral asset pricing models and the stylized facts," Kiel Working Papers 1426, Kiel Institute for the World Economy (IfW Kiel).
  12. Steven N. Durlauf, 2005. "Complexity and Empirical Economics," Economic Journal, Royal Economic Society, vol. 115(504), pages 225-243, June.
  13. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
  14. Simone Alfarano & Thomas Lux, 2007. "A Minimal Noise Trader Model with Realistic Time Series Properties," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 345-361, Springer.
  15. Jovanovic, Franck & Schinckus, Christophe, 2016. "Breaking down the barriers between econophysics and financial economics," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 256-266.
  16. Selçuk, Faruk & Gençay, Ramazan, 2006. "Intraday dynamics of stock market returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 375-387.
  17. Jean-Pierre Fouque & Matthew Lorig & Ronnie Sircar, 2016. "Second order multiscale stochastic volatility asymptotics: stochastic terminal layer analysis and calibration," Finance and Stochastics, Springer, vol. 20(3), pages 543-588, July.
  18. Raffaello Morales & T. Di Matteo & Ruggero Gramatica & Tomaso Aste, 2011. "Dynamical Hurst exponent as a tool to monitor unstable periods in financial time series," Papers 1109.0465, arXiv.org.
  19. Ausloos, Marcel & Jovanovic, Franck & Schinckus, Christophe, 2016. "On the “usual” misunderstandings between econophysics and finance: Some clarifications on modelling approaches and efficient market hypothesis," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 7-14.
  20. Lux, Thomas & Kaizoji, Taisei, 2007. "Forecasting volatility and volume in the Tokyo Stock Market: Long memory, fractality and regime switching," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1808-1843, June.
  21. Matteo Bonato & Massimiliano Caporin & Angelo Ranaldo, 2009. "Forecasting realized (co)variances with a block structure Wishart autoregressive model," Working Papers 2009-03, Swiss National Bank.
  22. Wyart, Matthieu & Bouchaud, Jean-Philippe, 2007. "Self-referential behaviour, overreaction and conventions in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 63(1), pages 1-24, May.
  23. Zhu, Mei & Chiarella, Carl & He, Xue-Zhong & Wang, Duo, 2009. "Does the market maker stabilize the market?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(15), pages 3164-3180.
  24. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
  25. Alfarano, Simone & Lux, Thomas, 2007. "A Noise Trader Model As A Generator Of Apparent Financial Power Laws And Long Memory," Macroeconomic Dynamics, Cambridge University Press, vol. 11(S1), pages 80-101, November.
  26. Wong, Hoi Ying & Chan, Chun Man, 2007. "Lookback options and dynamic fund protection under multiscale stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 357-385, May.
  27. V. Alfi & L. Pietronero & A. Zaccaria, 2008. "Minimal Agent Based Model For The Origin And Self-Organization Of Stylized Facts In Financial Markets," Papers 0807.1888, arXiv.org.
  28. Martin Tegnér & Rolf Poulsen, 2018. "Volatility Is Log-Normal—But Not for the Reason You Think," Risks, MDPI, vol. 6(2), pages 1-16, April.
  29. Aït-Sahalia, Yacine & Mancini, Loriano, 2008. "Out of sample forecasts of quadratic variation," Journal of Econometrics, Elsevier, vol. 147(1), pages 17-33, November.
  30. Laurent Calvet & Adlai Fisher, 2003. "Regime-Switching and the Estimation of Multifractal Processes," NBER Working Papers 9839, National Bureau of Economic Research, Inc.
  31. Zaitsev, Sergey & Zaitsev, Alexander & Leonidov, Andrei & Trainin, Vladimir, 2009. "Market mill dependence pattern in the stock market: Multiscale conditional dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(21), pages 4624-4634.
  32. Martin Magris, 2019. "A Vine-copula extension for the HAR model," Papers 1907.08522, arXiv.org.
  33. Barunik, Jozef & Krehlik, Tomas & Vacha, Lukas, 2016. "Modeling and forecasting exchange rate volatility in time-frequency domain," European Journal of Operational Research, Elsevier, vol. 251(1), pages 329-340.
  34. Matthieu Wyart & Jean-Philippe Bouchaud, 2003. "Self-referential behaviour, overreaction and conventions in financial markets," Science & Finance (CFM) working paper archive 500020, Science & Finance, Capital Fund Management.
  35. Maheu John, 2005. "Can GARCH Models Capture Long-Range Dependence?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(4), pages 1-43, December.
  36. Matteo, T. Di & Aste, T. & Dacorogna, Michel M., 2005. "Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 827-851, April.
  37. Jean-Pierre Fouque & Matthew Lorig & Ronnie Sircar, 2012. "Second Order Multiscale Stochastic Volatility Asymptotics: Stochastic Terminal Layer Analysis & Calibration," Papers 1208.5802, arXiv.org, revised Sep 2015.
  38. Eric Hillebrand & Marcelo Cunha Medeiros, 2010. "Asymmetries, breaks, and long-range dependence: An estimation framework for daily realized volatility," Textos para discussão 578, Department of Economics PUC-Rio (Brazil).
  39. Jean-Pierre Fouque & Chuan-Hsiang Han, 2003. "Pricing Asian options with stochastic volatility," Quantitative Finance, Taylor & Francis Journals, vol. 3(5), pages 353-362.
  40. Morales, Raffaello & Di Matteo, T. & Gramatica, Ruggero & Aste, Tomaso, 2012. "Dynamical generalized Hurst exponent as a tool to monitor unstable periods in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3180-3189.
  41. Xu, Zhaoxia & Gençay, Ramazan, 2003. "Scaling, self-similarity and multifractality in FX markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 323(C), pages 578-590.
  42. Matthew Lorig, 2010. "Time-Changed Fast Mean-Reverting Stochastic Volatility Models," Papers 1010.5203, arXiv.org, revised Apr 2012.
  43. Selçuk, Faruk, 2004. "Financial earthquakes, aftershocks and scaling in emerging stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 333(C), pages 306-316.
  44. Segnon, Mawuli & Lux, Thomas, 2013. "Multifractal models in finance: Their origin, properties, and applications," Kiel Working Papers 1860, Kiel Institute for the World Economy (IfW Kiel).
  45. McKelvey, Bill, 2004. "Toward a complexity science of entrepreneurship," Journal of Business Venturing, Elsevier, vol. 19(3), pages 313-341, May.
  46. Hillebrand, Eric, 2005. "Neglecting parameter changes in GARCH models," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 121-138.
  47. Stanley, H. Eugene & Plerou, Vasiliki & Gabaix, Xavier, 2008. "A statistical physics view of financial fluctuations: Evidence for scaling and universality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3967-3981.
  48. Eric Hillebrand, 2003. "Overlaying Time Scales and Persistence Estimation in GARCH(1,1) Models," Econometrics 0301003, University Library of Munich, Germany.
  49. Aganin, Artem, 2017. "Forecast comparison of volatility models on Russian stock market," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 48, pages 63-84.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.