IDEAS home Printed from https://ideas.repec.org/p/zbw/cauewp/5158.html
   My bibliography  Save this paper

A minimal noise trader model with realistic time series properties

Author

Listed:
  • Alfarano, Simone
  • Lux, Thomas

Abstract

Simulations of agent-based models have shown that the stylized facts (unit-root, fat tails and volatility clustering) of financial markets have a possible explanation in the interactions among agents. However, the complexity, originating from the presence of non-linearity and interactions, often limits the analytical approach to the dynamics of these models. In this paper we show that even a very simple model of a financial market with heterogeneous interacting agents is capable of reproducing realistic statistical properties of returns, in close quantitative accordance with the empirical analysis. The simplicity of the system also permits some analytical insights using concepts from statistical mechanics and physics. In our model, the traders are divided into two groups : fundamentalists and chartists, and their interactions are based on a variant of the herding mechanism introduced by Kirman [22]. The statistical analysis of our simulated data shows long-term dependence in the auto-correlations of squared and absolute returns and hyperbolic decay in the tail of the distribution of the raw returns, both with estimated decay parameters in the same range like empirical data. Theoretical analysis, however, excludes the possibility of ’true’ scaling behavior because of the Markovian nature of the underlying process and the finite set of possible realized returns. The model, therefore, only mimics power law behavior. Similarly as with the phenomenological volatility models analyzed in LeBaron [25], the usual statistical tests are not able to distinguish between true or pseudo-scaling laws in the dynamics of our artificial market.

Suggested Citation

  • Alfarano, Simone & Lux, Thomas, 2006. "A minimal noise trader model with realistic time series properties," Economics Working Papers 2006-11, Christian-Albrechts-University of Kiel, Department of Economics.
  • Handle: RePEc:zbw:cauewp:5158
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/3922/1/EWP-2006-11.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Christophre Georges, 2001. "Learning Dynamics in an Artificial Currency Market," Computing in Economics and Finance 2001 31, Society for Computational Economics.
    2. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-268, July.
    3. Andersson, Michael K. & Eklund, Bruno & Lyhagen, Johan, 1999. "A simple linear time series model with misleading nonlinear properties," Economics Letters, Elsevier, vol. 65(3), pages 281-284, December.
    4. LeBaron, Blake, 2000. "Agent-based computational finance: Suggested readings and early research," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 679-702, June.
    5. Bak, P. & Paczuski, M. & Shubik, M., 1997. "Price variations in a stock market with many agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 246(3), pages 430-453.
    6. Thomas Lux & Michele Marchesi, 2000. "Volatility Clustering In Financial Markets: A Microsimulation Of Interacting Agents," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 675-702.
    7. Kirman Alan & Teyssière Gilles, 2002. "Microeconomic Models for Long Memory in the Volatility of Financial Time Series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 5(4), pages 1-23, January.
    8. Takayasu, Hideki & Miura, Hitoshi & Hirabayashi, Tadashi & Hamada, Koichi, 1992. "Statistical properties of deterministic threshold elements — the case of market price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 184(1), pages 127-134.
    9. Andrea Gaunersdorfer & Cars Hommes, 2007. "A Nonlinear Structural Model for Volatility Clustering," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 265-288, Springer.
    10. Jeffrey A. Frankel & Kenneth A. Froot, 1986. "The Dollar as Speculative Bubble: A Tale of Fundamentalists and Chartists," NBER Working Papers 1854, National Bureau of Economic Research, Inc.
    11. Granger, Clive W. J. & Terasvirta, Timo, 1999. "A simple nonlinear time series model with misleading linear properties," Economics Letters, Elsevier, vol. 62(2), pages 161-165, February.
    12. Iori, Giulia, 2002. "A microsimulation of traders activity in the stock market: the role of heterogeneity, agents' interactions and trade frictions," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 269-285, October.
    13. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    14. Arifovic, Jasmina & Gencay, Ramazan, 2000. "Statistical properties of genetic learning in a model of exchange rate," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 981-1005, June.
    15. Youssefmir, Michael & Huberman, Bernardo A., 1997. "Clustered volatility in multiagent dynamics," Journal of Economic Behavior & Organization, Elsevier, vol. 32(1), pages 101-118, January.
    16. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    17. Chen, Shu-Heng & Yeh, Chia-Hsuan, 2002. "On the emergent properties of artificial stock markets: the efficient market hypothesis and the rational expectations hypothesis," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 217-239, October.
    18. Lux, Thomas & Schornstein, Sascha, 2005. "Genetic learning as an explanation of stylized facts of foreign exchange markets," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 169-196, February.
    19. D. Challet & A. Chessa & M. Marsili & Y-C. Zhang, 2001. "From Minority Games to real markets," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 168-176.
    20. Stefan Bornholdt, 2001. "Expectation Bubbles In A Spin Model Of Markets: Intermittency From Frustration Across Scales," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 12(05), pages 667-674.
    21. Farmer, J. Doyne & Joshi, Shareen, 2002. "The price dynamics of common trading strategies," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 149-171, October.
    22. Gaunersdorfer, A. & Hommes, C.H. & Wagener, F.O.O., 2000. "Bifurcation Routes to Volatility Clustering," CeNDEF Working Papers 00-04, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    23. B. B. Mandelbrot, 2001. "Stochastic volatility, power laws and long memory," Quantitative Finance, Taylor & Francis Journals, vol. 1(6), pages 558-559.
    24. Blake LeBaron, 2001. "Volatility," Computing in Economics and Finance 2001 108, Society for Computational Economics.
    25. Alan Kirman, 1993. "Ants, Rationality, and Recruitment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(1), pages 137-156.
    26. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 280-283, July.
    27. Beja, Avraham & Goldman, M Barry, 1980. "On the Dynamic Behavior of Prices in Disequilibrium," Journal of Finance, American Finance Association, vol. 35(2), pages 235-248, May.
    28. Thomas Lux & Sascha Schornstein, 2002. "Genetic Learning and the Stylized Facts of Foreign Exchange Markets," Computing in Economics and Finance 2002 22, Society for Computational Economics.
    29. Lux, Thomas, 1995. "Herd Behaviour, Bubbles and Crashes," Economic Journal, Royal Economic Society, vol. 105(431), pages 881-896, July.
    30. De Vries, C.G. & Leuven, K.U., 1994. "Stylized Facts of Nominal Exchange Rate Returns," Papers 94-002, Purdue University, Krannert School of Management - Center for International Business Education and Research (CIBER).
    31. B. LeBaron, 2001. "Stochastic volatility as a simple generator of apparent financial power laws and long memory," Quantitative Finance, Taylor & Francis Journals, vol. 1(6), pages 621-631.
    32. Chen, Shu-Heng & Lux, Thomas & Marchesi, Michele, 2001. "Testing for non-linear structure in an artificial financial market," Journal of Economic Behavior & Organization, Elsevier, vol. 46(3), pages 327-342, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis Goncalves de Faria, 2022. "An Agent-Based Model With Realistic Financial Time Series: A Method for Agent-Based Models Validation," Papers 2206.09772, arXiv.org.
    2. Christopher M Wray & Steven R Bishop, 2016. "A Financial Market Model Incorporating Herd Behaviour," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-28, March.
    3. David Morton de Lachapelle & Damien Challet, 2009. "Turnover, account value and diversification of real traders: evidence of collective portfolio optimizing behavior," Papers 0912.4723, arXiv.org, revised Jun 2010.
    4. Vishwesha Guttal & Srinivas Raghavendra & Nikunj Goel & Quentin Hoarau, 2016. "Lack of Critical Slowing Down Suggests that Financial Meltdowns Are Not Critical Transitions, yet Rising Variability Could Signal Systemic Risk," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
    5. Anne Peguin-Feissolle & Gilles Dufrénot & Dominique Guegan, 2006. "Changing-regime volatility : A fractionally integrated SETAR model," Working Papers halshs-00410540, HAL.
    6. Lux, Thomas, 2006. "Financial power laws: Empirical evidence, models, and mechanism," Economics Working Papers 2006-12, Christian-Albrechts-University of Kiel, Department of Economics.
    7. Heni Boubaker & Nadia Sghaier, 2014. "Wavelet based Estimation of Time- Varying Long Memory Model with Nonlinear Fractional Integration Parameter," Working Papers 2014-284, Department of Research, Ipag Business School.
    8. Simone Alfarano & Thomas Lux & Friedrich Wagner, 2005. "Estimation of Agent-Based Models: The Case of an Asymmetric Herding Model," Computational Economics, Springer;Society for Computational Economics, vol. 26(1), pages 19-49, August.
    9. Moran, José & Fosset, Antoine & Kirman, Alan & Benzaquen, Michael, 2021. "From ants to fishing vessels: a simple model for herding and exploitation of finite resources," Journal of Economic Dynamics and Control, Elsevier, vol. 129(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alfarano, Simone & Lux, Thomas, 2007. "A Noise Trader Model As A Generator Of Apparent Financial Power Laws And Long Memory," Macroeconomic Dynamics, Cambridge University Press, vol. 11(S1), pages 80-101, November.
    2. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    3. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    4. Lux, Thomas, 2008. "Stochastic behavioral asset pricing models and the stylized facts," Kiel Working Papers 1426, Kiel Institute for the World Economy (IfW Kiel).
    5. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
    6. Lux, Thomas, 2008. "Stochastic behavioral asset pricing models and the stylized facts," Economics Working Papers 2008-08, Christian-Albrechts-University of Kiel, Department of Economics.
    7. Alfarano, Simone & Lux, Thomas & Wagner, Friedrich, 2008. "Time variation of higher moments in a financial market with heterogeneous agents: An analytical approach," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 101-136, January.
    8. He, Xue-Zhong & Li, Youwei, 2007. "Power-law behaviour, heterogeneity, and trend chasing," Journal of Economic Dynamics and Control, Elsevier, vol. 31(10), pages 3396-3426, October.
    9. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    10. Youwei Li & Xue-Zhong He, 2005. "Long Memory, Heterogeneity, and Trend Chasing," Computing in Economics and Finance 2005 113, Society for Computational Economics.
    11. Lux, Thomas, 2006. "Financial power laws: Empirical evidence, models, and mechanism," Economics Working Papers 2006-12, Christian-Albrechts-University of Kiel, Department of Economics.
    12. Thomas Lux, 2009. "Applications of Statistical Physics in Finance and Economics," Chapters, in: J. Barkley Rosser Jr. (ed.), Handbook of Research on Complexity, chapter 9, Edward Elgar Publishing.
    13. Simone Alfarano & Thomas Lux & Friedrich Wagner, 2005. "Estimation of Agent-Based Models: The Case of an Asymmetric Herding Model," Computational Economics, Springer;Society for Computational Economics, vol. 26(1), pages 19-49, August.
    14. Brock, William A. & Hommes, Cars H. & Wagener, Florian O. O., 2005. "Evolutionary dynamics in markets with many trader types," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 7-42, February.
    15. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    16. Torsten Trimborn & Philipp Otte & Simon Cramer & Max Beikirch & Emma Pabich & Martin Frank, 2018. "SABCEMM-A Simulator for Agent-Based Computational Economic Market Models," Papers 1801.01811, arXiv.org, revised Oct 2018.
    17. Cars Hommes & Florian Wagener, 2008. "Complex Evolutionary Systems in Behavioral Finance," Tinbergen Institute Discussion Papers 08-054/1, Tinbergen Institute.
    18. Andrea Morone, 2008. "Financial markets in the laboratory: an experimental analysis of some stylized facts," Quantitative Finance, Taylor & Francis Journals, vol. 8(5), pages 513-532.
    19. Hommes, C.H., 2005. "Heterogeneous Agent Models in Economics and Finance, In: Handbook of Computational Economics II: Agent-Based Computational Economics, edited by Leigh Tesfatsion and Ken Judd , Elsevier, Amsterdam 2006," CeNDEF Working Papers 05-03, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    20. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.

    More about this item

    Keywords

    Speculative Dynamics; Fat Tails; Volatility Clustering; Herd Behavior;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cauewp:5158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/vakiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.