IDEAS home Printed from https://ideas.repec.org/r/sae/toueco/v11y2005i3p301-328.html
   My bibliography  Save this item

Neural Network Forecasting of Tourism Demand

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Prasert Chaitip & Chukiat Chaiboonsri & N. Rangaswamy & Siriporn Mcdowall, 2009. "Forecasting with X-12-Arima: International Tourist Arrivals to India," Annals of the University of Petrosani, Economics, University of Petrosani, Romania, vol. 9(1), pages 107-128.
  2. Rice, William L. & Park, So Young & Pan, Bing & Newman, Peter, 2019. "Forecasting campground demand in US national parks," Annals of Tourism Research, Elsevier, vol. 75(C), pages 424-438.
  3. Carl Bonham & Peter Fuleky & James Jones & Ashley Hirashima, 2015. "Nowcasting Tourism Industry Performance Using High Frequency Covariates," Working Papers 2015-3, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
  4. Oscar Claveria & Enric Monte & Salvador Torra, 2015. "“Self-organizing map analysis of agents' expectations. Different patterns of anticipation of the 2008 financial crisis”," IREA Working Papers 201511, University of Barcelona, Research Institute of Applied Economics, revised Mar 2015.
  5. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "“A regional perspective on the accuracy of machine learning forecasts of tourism demand based on data characteristics”," IREA Working Papers 201805, University of Barcelona, Research Institute of Applied Economics, revised Mar 2018.
  6. Li, Cheng & Zheng, Weimin & Ge, Peng, 2022. "Tourism demand forecasting with spatiotemporal features," Annals of Tourism Research, Elsevier, vol. 94(C).
  7. Hirashima, Ashley & Jones, James & Bonham, Carl S. & Fuleky, Peter, 2017. "Forecasting in a Mixed Up World: Nowcasting Hawaii Tourism," Annals of Tourism Research, Elsevier, vol. 63(C), pages 191-202.
  8. Long Wen & Chang Liu & Haiyan Song, 2019. "Forecasting tourism demand using search query data: A hybrid modelling approach," Tourism Economics, , vol. 25(3), pages 309-329, May.
  9. Baggio, Rodolfo & Sainaghi, Ruggero, 2016. "Mapping time series into networks as a tool to assess the complex dynamics of tourism systems," Tourism Management, Elsevier, vol. 54(C), pages 23-33.
  10. Xie, Gang & Qian, Yatong & Wang, Shouyang, 2020. "A decomposition-ensemble approach for tourism forecasting," Annals of Tourism Research, Elsevier, vol. 81(C).
  11. Maela Madel L. Cahigas & Ardvin Kester S. Ong & Yogi Tri Prasetyo, 2023. "Super Typhoon Rai’s Impacts on Siargao Tourism: Deciphering Tourists’ Revisit Intentions through Machine-Learning Algorithms," Sustainability, MDPI, vol. 15(11), pages 1-29, May.
  12. Oscar Claveria & Enric Monte & Salvador Torra, 2017. "“Regional tourism demand forecasting with machine learning models: Gaussian process regression vs. neural network models in a multiple-input multiple-output setting"," IREA Working Papers 201701, University of Barcelona, Research Institute of Applied Economics, revised Jan 2017.
  13. Jian-Wu Bi & Tian-Yu Han & Hui Li, 2022. "International tourism demand forecasting with machine learning models: The power of the number of lagged inputs," Tourism Economics, , vol. 28(3), pages 621-645, May.
  14. Peng, Bo & Song, Haiyan & Crouch, Geoffrey I., 2014. "A meta-analysis of international tourism demand forecasting and implications for practice," Tourism Management, Elsevier, vol. 45(C), pages 181-193.
  15. Hassani, Hossein & Silva, Emmanuel Sirimal & Antonakakis, Nikolaos & Filis, George & Gupta, Rangan, 2017. "Forecasting accuracy evaluation of tourist arrivals," Annals of Tourism Research, Elsevier, vol. 63(C), pages 112-127.
  16. Bi, Jian-Wu & Liu, Yang & Li, Hui, 2020. "Daily tourism volume forecasting for tourist attractions," Annals of Tourism Research, Elsevier, vol. 83(C).
  17. Qingjie Zhou & Panpan Zhu & You Wu & Yinpeng Zhang, 2022. "Research on the Volatility of the Cotton Market under Different Term Structures: Perspective from Investor Attention," Sustainability, MDPI, vol. 14(21), pages 1-20, November.
  18. Song, Haiyan & Qiu, Richard T.R. & Park, Jinah, 2019. "A review of research on tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 75(C), pages 338-362.
  19. Oscar Claveria & Enric Monte & Salvador Torra, 2014. "“A multivariate neural network approach to tourism demand forecasting”," AQR Working Papers 201410, University of Barcelona, Regional Quantitative Analysis Group, revised May 2014.
  20. Claveria, Oscar & Torra, Salvador, 2014. "Forecasting tourism demand to Catalonia: Neural networks vs. time series models," Economic Modelling, Elsevier, vol. 36(C), pages 220-228.
  21. Dr. Murat çuhadar & Iclal Cogurcu & Ceyda Kukrer, 2014. "Modelling and Forecasting Cruise Tourism Demand to Izmir by Different Artificial Neural Network Architectures," International Journal of Business and Social Research, LAR Center Press, vol. 4(3), pages 12-28, March.
  22. Katerina Volchek & Anyu Liu & Haiyan Song & Dimitrios Buhalis, 2019. "Forecasting tourist arrivals at attractions: Search engine empowered methodologies," Tourism Economics, , vol. 25(3), pages 425-447, May.
  23. Hadavandi, Esmaeil & Ghanbari, Arash & Shahanaghi, Kamran & Abbasian-Naghneh, Salman, 2011. "Tourist arrival forecasting by evolutionary fuzzy systems," Tourism Management, Elsevier, vol. 32(5), pages 1196-1203.
  24. Kulshrestha, Anurag & Krishnaswamy, Venkataraghavan & Sharma, Mayank, 2020. "Bayesian BILSTM approach for tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 83(C).
  25. Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Combination of long term and short term forecasts, with application to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 27(3), pages 870-886, July.
  26. Adriana Csikosova & Katarina Culkova & Erik Weiss & Maria Janoskova, 2021. "Evaluation of Market with Accommodation Facilities Considering Risk Influence—Case Study Slovakia," JRFM, MDPI, vol. 14(5), pages 1-17, May.
  27. Yi-Chung Hu, 2023. "Tourism combination forecasting using a dynamic weighting strategy with change-point analysis," Current Issues in Tourism, Taylor & Francis Journals, vol. 26(14), pages 2357-2374, July.
  28. Anca-Gabriela Turtureanu & Rodica Pripoaie & Carmen-Mihaela Cretu & Carmen-Gabriela Sirbu & Emanuel Ştefan Marinescu & Laurentiu-Gabriel Talaghir & Florentina Chițu, 2022. "A Projection Approach of Tourist Circulation under Conditions of Uncertainty," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
  29. Mingming Hu & Haiyan Song, 2020. "Data source combination for tourism demand forecasting," Tourism Economics, , vol. 26(7), pages 1248-1265, November.
  30. Marcos Álvarez-Díaz & Manuel González-Gómez & María Soledad Otero-Giráldez, 2018. "Forecasting International Tourism Demand Using a Non-Linear Autoregressive Neural Network and Genetic Programming," Forecasting, MDPI, vol. 1(1), pages 1-17, September.
  31. Liang Zhu & Christine Lim & Wenjun Xie & Yuan Wu, 2017. "Analysis of tourism demand serial dependence structure for forecasting," Tourism Economics, , vol. 23(7), pages 1419-1436, November.
  32. Bi, Jian-Wu & Li, Hui & Fan, Zhi-Ping, 2021. "Tourism demand forecasting with time series imaging: A deep learning model," Annals of Tourism Research, Elsevier, vol. 90(C).
  33. Nicholas Apergis & Andrea Mervar & James E. Payne, 2017. "Forecasting disaggregated tourist arrivals in Croatia," Tourism Economics, , vol. 23(1), pages 78-98, February.
  34. Dr. Murat çuhadar & Iclal Cogurcu & Ceyda Kukrer, 2014. "Modelling and Forecasting Cruise Tourism Demand to Izmir by Different Artificial Neural Network Architectures," International Journal of Business and Social Research, MIR Center for Socio-Economic Research, vol. 4(3), pages 12-28, March.
  35. Luis Alberiko Gil-Alaña, 2010. "Tourism in South Africa. Time series persistence and the nature of shocks. Are they transitory or permament?," NCID Working Papers 06/2011, Navarra Center for International Development, University of Navarra.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.