IDEAS home Printed from https://ideas.repec.org/r/rim/rimwps/35_11.html
   My bibliography  Save this item

Hierarchical Shrinkage in Time-Varying Parameter Models

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Pfarrhofer, Michael, 2023. "Measuring International Uncertainty Using Global Vector Autoregressions with Drifting Parameters," Macroeconomic Dynamics, Cambridge University Press, vol. 27(3), pages 770-793, April.
  2. Niko Hauzenberger & Florian Huber & Gary Koop & James Mitchell, 2023. "Bayesian Modeling of Time-Varying Parameters Using Regression Trees," Working Papers 23-05, Federal Reserve Bank of Cleveland.
  3. Annalisa Cadonna & Sylvia Fruhwirth-Schnatter & Peter Knaus, 2019. "Triple the gamma -- A unifying shrinkage prior for variance and variable selection in sparse state space and TVP models," Papers 1912.03100, arXiv.org.
  4. Florian Huber & Gregor Kastner & Martin Feldkircher, 2019. "Should I stay or should I go? A latent threshold approach to large‐scale mixture innovation models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(5), pages 621-640, August.
  5. Gary Koop & Dimitris Korobilis, 2023. "Bayesian Dynamic Variable Selection In High Dimensions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1047-1074, August.
  6. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
  7. Prüser, Jan, 2017. "Forecasting US inflation using Markov dimension switching," Ruhr Economic Papers 710, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
  8. Korobilis, Dimitris & Koop, Gary, 2018. "Variational Bayes inference in high-dimensional time-varying parameter models," Essex Finance Centre Working Papers 22665, University of Essex, Essex Business School.
  9. John M. Maheu & Yong Song, 2018. "An efficient Bayesian approach to multiple structural change in multivariate time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(2), pages 251-270, March.
  10. Simon Beyeler, 2019. "Streamlining Time-varying VAR with a Factor Structure in the Parameters," Working Papers 19.03, Swiss National Bank, Study Center Gerzensee.
  11. Niko Hauzenberger & Florian Huber & Gary Koop & Luca Onorante, 2022. "Fast and Flexible Bayesian Inference in Time-varying Parameter Regression Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1904-1918, October.
  12. Chan, Joshua C.C. & Eisenstat, Eric & Strachan, Rodney W., 2020. "Reducing the state space dimension in a large TVP-VAR," Journal of Econometrics, Elsevier, vol. 218(1), pages 105-118.
  13. Eric Eisenstat & Joshua C. C. Chan & Rodney W. Strachan, 2016. "Stochastic Model Specification Search for Time-Varying Parameter VARs," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1638-1665, December.
  14. David Kohns & Arnab Bhattacharjee, 2020. "Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model," Papers 2011.00938, arXiv.org, revised May 2022.
  15. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
  16. Adam, Marc C. & Jansson, Walter, 2019. "Credit constraints and the propagation of the Great Depression in Germany," Discussion Papers 2019/12, Free University Berlin, School of Business & Economics.
  17. Lasha Kavtaradze & Manouchehr Mokhtari, 2018. "Factor Models And Time†Varying Parameter Framework For Forecasting Exchange Rates And Inflation: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 32(2), pages 302-334, April.
  18. Joscha Beckmann & Rainer Schüssler, 2014. "Forecasting Exchange Rates under Model and Parameter Uncertainty," CQE Working Papers 3214, Center for Quantitative Economics (CQE), University of Muenster.
  19. Niko Hauzenberger, 2020. "Flexible Mixture Priors for Large Time-varying Parameter Models," Papers 2006.10088, arXiv.org, revised Nov 2020.
  20. Kastner, Gregor, 2019. "Sparse Bayesian time-varying covariance estimation in many dimensions," Journal of Econometrics, Elsevier, vol. 210(1), pages 98-115.
  21. Dufays, Arnaud & Rombouts, Jeroen V.K., 2020. "Relevant parameter changes in structural break models," Journal of Econometrics, Elsevier, vol. 217(1), pages 46-78.
  22. Korobilis, D, 2017. "Forecasting with many predictors using message passing algorithms," Essex Finance Centre Working Papers 19565, University of Essex, Essex Business School.
  23. Bitto, Angela & Frühwirth-Schnatter, Sylvia, 2019. "Achieving shrinkage in a time-varying parameter model framework," Journal of Econometrics, Elsevier, vol. 210(1), pages 75-97.
  24. Annalisa Cadonna & Sylvia Frühwirth-Schnatter & Peter Knaus, 2020. "Triple the Gamma—A Unifying Shrinkage Prior for Variance and Variable Selection in Sparse State Space and TVP Models," Econometrics, MDPI, vol. 8(2), pages 1-36, May.
  25. Macias, Paweł & Stelmasiak, Damian & Szafranek, Karol, 2023. "Nowcasting food inflation with a massive amount of online prices," International Journal of Forecasting, Elsevier, vol. 39(2), pages 809-826.
  26. Damian Stelmasiak & Grzegorz Szafrański, 2016. "Forecasting the Polish Inflation Using Bayesian VAR Models with Seasonality," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 8(1), pages 21-42, March.
  27. Beckmann, Joscha & Schüssler, Rainer, 2016. "Forecasting exchange rates under parameter and model uncertainty," Journal of International Money and Finance, Elsevier, vol. 60(C), pages 267-288.
  28. Dimitris Korobilis, 2021. "High-Dimensional Macroeconomic Forecasting Using Message Passing Algorithms," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 493-504, March.
  29. Niaz Bashiri Behmiri, Maryam Ahmadi, Juha-Pekka Junttila, and Matteo Manera, 2021. "Financial Stress and Basis in Energy Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
  30. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
  31. Yunyun Wang & Tatsushi Oka & Dan Zhu, 2024. "Inflation Target at Risk: A Time-varying Parameter Distributional Regression," Papers 2403.12456, arXiv.org.
  32. Sylvia Fruhwirth-Schnatter & Peter Knaus, 2022. "Sparse Bayesian State-Space and Time-Varying Parameter Models," Papers 2207.12147, arXiv.org.
  33. Zheng, Tingguo & Ye, Shiqi & Hong, Yongmiao, 2023. "Fast estimation of a large TVP-VAR model with score-driven volatilities," Journal of Economic Dynamics and Control, Elsevier, vol. 157(C).
  34. Martin Feldkircher & Nico Hauzenberger, 2019. "How useful are time-varying parameter models for forecasting economic growth in CESEE?," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue Q1/19, pages 29-48.
  35. Igor Ferreira Batista Martins & Hedibert Freitas Lopes, 2023. "Stochastic volatility models with skewness selection," Papers 2312.00282, arXiv.org.
  36. Martin Feldkircher & Luis Gruber & Florian Huber & Gregor Kastner, 2017. "Sophisticated and small versus simple and sizeable: When does it pay off to introduce drifting coefficients in Bayesian VARs?," Papers 1711.00564, arXiv.org, revised Mar 2024.
  37. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
  38. Florian Huber & Michael Pfarrhofer & Philipp Piribauer, 2020. "A multi‐country dynamic factor model with stochastic volatility for euro area business cycle analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 911-926, September.
  39. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
  40. Joshua C. C. Chan, 2018. "Specification tests for time-varying parameter models with stochastic volatility," Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 807-823, September.
  41. Rangan Gupta & Mampho P. Modise & Josine Uwilingiye, 2016. "Out-of-Sample Equity Premium Predictability in South Africa: Evidence from a Large Number of Predictors," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 52(8), pages 1935-1955, August.
  42. Yang Aijun & Xiang Ju & Yang Hongqiang & Lin Jinguan, 2018. "Sparse Bayesian Variable Selection in Probit Model for Forecasting U.S. Recessions Using a Large Set of Predictors," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 1123-1138, April.
  43. Matei, Florin, 2014. "An empirical examination of stock market integration in EMU," MPRA Paper 60717, University Library of Munich, Germany.
  44. Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023. "Real-time inflation forecasting using non-linear dimension reduction techniques," International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.
  45. Joshua C. C. Chan & Eric Eisenstat, 2018. "Bayesian model comparison for time‐varying parameter VARs with stochastic volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(4), pages 509-532, June.
  46. Niko Hauzenberger & Florian Huber & Karin Klieber & Massimiliano Marcellino, 2022. "Bayesian Neural Networks for Macroeconomic Analysis," Papers 2211.04752, arXiv.org, revised Apr 2024.
  47. repec:hal:spmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
  48. Filippo Ferroni & Stefano Grassi & Miguel A. Leon-Ledesma, 2015. "Fundamental shock selection in DSGE models," Studies in Economics 1508, School of Economics, University of Kent.
  49. Yuntong Liu & Yu Wei & Yi Liu & Wenjuan Li, 2020. "Forecasting Oil Price by Hierarchical Shrinkage in Dynamic Parameter Models," Discrete Dynamics in Nature and Society, Hindawi, vol. 2020, pages 1-12, December.
  50. Peter Knaus & Sylvia Fruhwirth-Schnatter, 2023. "The Dynamic Triple Gamma Prior as a Shrinkage Process Prior for Time-Varying Parameter Models," Papers 2312.10487, arXiv.org.
  51. Florian Huber & Gary Koop & Michael Pfarrhofer, 2020. "Bayesian Inference in High-Dimensional Time-varying Parameter Models using Integrated Rotated Gaussian Approximations," Papers 2002.10274, arXiv.org.
  52. repec:spo:wpmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
  53. Michelle, Gilmartin, 2016. "A note on the identification and transmission of energy demand and supply shocks," MPRA Paper 76186, University Library of Munich, Germany.
  54. Kalli, Maria & Griffin, Jim E., 2014. "Time-varying sparsity in dynamic regression models," Journal of Econometrics, Elsevier, vol. 178(2), pages 779-793.
  55. Christian Hotz‐Behofsits & Florian Huber & Thomas Otto Zörner, 2018. "Predicting crypto‐currencies using sparse non‐Gaussian state space models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(6), pages 627-640, September.
  56. Joshua C.C. Chan & Rodney W. Strachan, 2023. "Bayesian State Space Models In Macroeconometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 58-75, February.
  57. Korobilis, Dimitris, 2014. "Data-based priors for vector autoregressions with drifting coefficients," SIRE Discussion Papers 2014-022, Scottish Institute for Research in Economics (SIRE).
  58. Peter Knaus & Angela Bitto-Nemling & Annalisa Cadonna & Sylvia Fruhwirth-Schnatter, 2019. "Shrinkage in the Time-Varying Parameter Model Framework Using the R Package shrinkTVP," Papers 1907.07065, arXiv.org, revised Nov 2020.
  59. Belomestny, Denis & Krymova, Ekaterina & Polbin, Andrey, 2021. "Bayesian TVP-VARX models with time invariant long-run multipliers," Economic Modelling, Elsevier, vol. 101(C).
  60. McAlinn, Kenichiro & West, Mike, 2019. "Dynamic Bayesian predictive synthesis in time series forecasting," Journal of Econometrics, Elsevier, vol. 210(1), pages 155-169.
  61. Dufays, A. & Rombouts, V., 2015. "Sparse Change-Point Time Series Models," LIDAM Discussion Papers CORE 2015032, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  62. Dimitrios P. Louzis, 2019. "Steady‐state modeling and macroeconomic forecasting quality," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(2), pages 285-314, March.
  63. Wang, Zongrun & Zhou, Ling & Mi, Yunlong & Shi, Yong, 2022. "Measuring dynamic pandemic-related policy effects: A time-varying parameter multi-level dynamic factor model approach," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
  64. Kohns, David & Bhattacharjee, Arnab, 2023. "Nowcasting growth using Google Trends data: A Bayesian Structural Time Series model," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1384-1412.
  65. Liang, Ruibin & Cheng, Sheng & Cao, Yan & Li, Xinran, 2024. "Multi-scale impacts of oil shocks on travel and leisure stocks: A MODWT-Bayesian TVP model with shrinkage approach," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
  66. Rangan Gupta & Shawkat Hammoudeh & Beatrice D. Simo-Kengne & Soodabeh Sarafrazi, 2013. "Can the Sharia-Based Islamic Stock Market Returns be Forecasted Using Large Number of Predictors and Models?," Working Papers 201381, University of Pretoria, Department of Economics.
  67. Chan, Joshua C.C. & Grant, Angelia L., 2016. "Fast computation of the deviance information criterion for latent variable models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 847-859.
  68. Fu, Zhonghao & Hong, Yongmiao & Su, Liangjun & Wang, Xia, 2023. "Specification tests for time-varying coefficient models," Journal of Econometrics, Elsevier, vol. 235(2), pages 720-744.
  69. Matteo Iacopini & Luca Rossini, 2019. "Bayesian nonparametric graphical models for time-varying parameters VAR," Papers 1906.02140, arXiv.org.
  70. Jan Prüser, 2021. "Forecasting US inflation using Markov dimension switching," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 481-499, April.
  71. Bäurle Gregor & Kaufmann Daniel & Kaufmann Sylvia & Strachan Rodney, 2020. "Constrained interest rates and changing dynamics at the zero lower bound," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(2), pages 1-26, April.
  72. Felix Abramovich & Vadim Grinshtein, 2013. "Estimation of a sparse group of sparse vectors," Biometrika, Biometrika Trust, vol. 100(2), pages 355-370.
  73. Filippo Ferroni & Stefano Grassi & Miguel A. León-Ledesma, 2017. "Selecting Primal Innovations in DSGE models," Working Paper Series WP-2017-20, Federal Reserve Bank of Chicago.
  74. Lopes, Hedibert F. & McCulloch, Robert E. & Tsay, Ruey S., 2022. "Parsimony inducing priors for large scale state–space models," Journal of Econometrics, Elsevier, vol. 230(1), pages 39-61.
  75. Fu, Bowen, 2020. "Is the slope of the Phillips curve time-varying? Evidence from unobserved components models," Economic Modelling, Elsevier, vol. 88(C), pages 320-340.
  76. Chan, Joshua C.C. & Eisenstat, Eric, 2018. "Comparing hybrid time-varying parameter VARs," Economics Letters, Elsevier, vol. 171(C), pages 1-5.
  77. Marta Banbura & Andries van Vlodrop, 2018. "Forecasting with Bayesian Vector Autoregressions with Time Variation in the Mean," Tinbergen Institute Discussion Papers 18-025/IV, Tinbergen Institute.
  78. Malefaki, Valia, 2015. "On Flexible Linear Factor Stochastic Volatility Models," MPRA Paper 62216, University Library of Munich, Germany.
  79. Philippe Goulet Coulombe, 2020. "Time-Varying Parameters as Ridge Regressions," Papers 2009.00401, arXiv.org, revised Nov 2024.
  80. Sakaria, D.K. & Griffin, J.E., 2017. "On efficient Bayesian inference for models with stochastic volatility," Econometrics and Statistics, Elsevier, vol. 3(C), pages 23-33.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.