IDEAS home Printed from https://ideas.repec.org/r/rdg/icmadp/icma-dp2003-07.html
   My bibliography  Save this item

Multivariate GARCH Models: Software Choice and Estimation Issues

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
  2. Zhu, Jie, 2009. "Testing for expected return and market price of risk in Chinese A and B share markets: A geometric Brownian motion and multivariate GARCH model approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2633-2653.
  3. Palandri, Alessandro, 2009. "Sequential conditional correlations: Inference and evaluation," Journal of Econometrics, Elsevier, vol. 153(2), pages 122-132, December.
  4. Linkon Mondal, 2012. "Foreign Exchange Market Intervention and Exchange Rate Volatility: A Bivariate GARCH Model for India," The IUP Journal of Bank Management, IUP Publications, vol. 0(4), pages 29-40, November.
  5. Krishnakumar, Jaya & Kabili, Andi & Roko, Ilir, 2012. "Estimation of SEM with GARCH errors," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3153-3181.
  6. Colavecchio, Roberta & Funke, Michael, 2008. "Volatility transmissions between renminbi and Asia-Pacific on-shore and off-shore U.S. dollar futures," China Economic Review, Elsevier, vol. 19(4), pages 635-648, December.
  7. Amélie Charles & Olivier Darné, 2019. "The accuracy of asymmetric GARCH model estimation," Post-Print hal-01943883, HAL.
  8. Ooms, M., 2008. "Trends in Applied Econometrics Software Development 1985-2008, an analysis of Journal of Applied Econometrics research articles, software reviews, data and code," Serie Research Memoranda 0021, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
  9. Amélie Charles & Olivier Darné, 2019. "The accuracy of asymmetric GARCH model estimation," International Economics, CEPII research center, issue 157, pages 179-202.
  10. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
  11. Panos Xidonas & Mike Tsionas & Constantin Zopounidis, 2020. "On mutual funds-of-ETFs asset allocation with rebalancing: sample covariance versus EWMA and GARCH," Annals of Operations Research, Springer, vol. 284(1), pages 469-482, January.
  12. Patrick McGlenchy & Paul Kofman, 2004. "Structurally Sound Dynamic Index Futures Hedging," Econometric Society 2004 Australasian Meetings 80, Econometric Society.
  13. Mabelle Sayah, 2016. "Analyzing and Comparing Basel's III Sensitivity Based Approach for the interest rate risk in the trading book," Post-Print hal-01217928, HAL.
  14. Mori Kogid & Jaratin Lily & Rozilee Asid & James M. Alin & Dullah Mulok, 2022. "Volatility spillover and dynamic co-movement of foreign direct investment between Malaysia and China and developed countries," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(1), pages 131-148, February.
  15. Charles, Amélie & Darné, Olivier, 2017. "Forecasting crude-oil market volatility: Further evidence with jumps," Energy Economics, Elsevier, vol. 67(C), pages 508-519.
  16. Franck Martin & Jiangxingyun Zhang, 2014. "Correlation and volatility on bond markets during the EMU crisis: does the OMT change the process ?," Economics Bulletin, AccessEcon, vol. 34(2), pages 1327-1349.
  17. repec:hal:wpaper:hal-01943883 is not listed on IDEAS
  18. Silvennoinen, Annastiina & Teräsvirta, Timo, 2007. "Multivariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 669, Stockholm School of Economics, revised 18 Jan 2008.
  19. Kumar Arya & Sahoo Jyotirmayee & Sahoo Jyotsnarani & Nanda Subhashree & Debyani Devi, 2024. "Exploring Asymmetric GARCH Models for Predicting Indian Base Metal Price Volatility," Folia Oeconomica Stetinensia, Sciendo, vol. 24(1), pages 105-123.
  20. repec:hal:wpaper:hal-01217928 is not listed on IDEAS
  21. Kasper Johansson & Mehmet Giray Ogut & Markus Pelger & Thomas Schmelzer & Stephen Boyd, 2023. "A Simple Method for Predicting Covariance Matrices of Financial Returns," Papers 2305.19484, arXiv.org, revised Nov 2023.
  22. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  23. A. Yalta & A. Yalta, 2010. "Should Economists Use Open Source Software for Doing Research?," Computational Economics, Springer;Society for Computational Economics, vol. 35(4), pages 371-394, April.
  24. repec:zbw:bofitp:2006_016 is not listed on IDEAS
  25. Nico Keilman & Dinh Quang Pham, 2004. "Empirical errors and predicted errors in fertility, mortality and migration forecasts in the European Economic Area," Discussion Papers 386, Statistics Norway, Research Department.
  26. Kwan, Clarence C.Y., 2008. "Estimation error in the average correlation of security returns and shrinkage estimation of covariance and correlation matrices," Finance Research Letters, Elsevier, vol. 5(4), pages 236-244, December.
  27. Xidonas, Panos & Doukas, Haris & Hassapis, Christis, 2021. "Grouped data, investment committees & multicriteria portfolio selection," Journal of Business Research, Elsevier, vol. 129(C), pages 205-222.
  28. Linkon Mondal, 2014. "Volatility spillover between the RBI’s intervention and exchange rate," International Economics and Economic Policy, Springer, vol. 11(4), pages 549-560, December.
  29. Colavecchio, Roberta & Funke, Michael, 2008. "Volatility transmissions between renminbi and Asia-Pacific on-shore and off-shore U.S. dollar futures," China Economic Review, Elsevier, vol. 19(4), pages 635-648, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.