IDEAS home Printed from https://ideas.repec.org/r/pen/papers/16-022.html
   My bibliography  Save this item

Forecasting with Dynamic Panel Data Models

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Mihaela Simionescu & Javier Cifuentes-Faura, 2022. "Forecasting National and Regional Youth Unemployment in Spain Using Google Trends," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 164(3), pages 1187-1216, December.
  2. Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2023. "Forecasting with a panel Tobit model," Quantitative Economics, Econometric Society, vol. 14(1), pages 117-159, January.
  3. Hyungsik Roger Moon & Frank Schorfheide & Boyuan Zhang, 2023. "Bayesian Estimation of Panel Models under Potentially Sparse Heterogeneity," Papers 2310.13785, arXiv.org, revised Feb 2024.
  4. Andrew Y Chen & Tom Zimmermann & Jeffrey Pontiff, 2020. "Publication Bias and the Cross-Section of Stock Returns," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 10(2), pages 249-289.
  5. Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2020. "Forecasting With Dynamic Panel Data Models," Econometrica, Econometric Society, vol. 88(1), pages 171-201, January.
  6. Seoyoung Yu & Donghyun Kim, 2021. "Changes in Regional Economic Resilience after the 2008 Global Economic Crisis: The Case of Korea," Sustainability, MDPI, vol. 13(20), pages 1-14, October.
  7. Smith, Simon C. & Timmermann, Allan & Zhu, Yinchu, 2019. "Variable selection in panel models with breaks," Journal of Econometrics, Elsevier, vol. 212(1), pages 323-344.
  8. Antonio Pacifico, 2023. "Obesity and labour market outcomes in Italy: a dynamic panel data evidence with correlated random effects," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 24(4), pages 557-574, June.
  9. Randal Verbrugge & Alan Dorfman & William Johnson & Fred Marsh III & Robert Poole & Owen Shoemaker, 2017. "Determinants of Differential Rent Changes: Mean Reversion versus the Usual Suspects," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 45(3), pages 591-627, July.
  10. Liu, Laura & Moon, Hyungsik Roger & Schorfheide, Frank, 2021. "Panel forecasts of country-level Covid-19 infections," Journal of Econometrics, Elsevier, vol. 220(1), pages 2-22.
  11. Raffaella Giacomini & Sokbae Lee & Silvia Sarpietro, 2023. "A Robust Method for Microforecasting and Estimation of Random Effects," Papers 2308.01596, arXiv.org.
  12. Lin, Jilei & Eck, Daniel J., 2021. "Minimizing post-shock forecasting error through aggregation of outside information," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1710-1727.
  13. Yugang He, 2024. "E-commerce and foreign direct investment: pioneering a new era of trade strategies," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
  14. Pengyu Chen & Yiannis Karavias & Elias Tzavalis, 2022. "Panel unit-root tests with structural breaks," Stata Journal, StataCorp LP, vol. 22(3), pages 664-678, September.
  15. Laura Liu, 2017. "Density Forecasts in Panel Models: A semiparametric Bayesian Perspective," PIER Working Paper Archive 17-006, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 28 Apr 2017.
  16. Andrew Y. Chen, 2022. "Do t-Statistic Hurdles Need to be Raised?," Papers 2204.10275, arXiv.org, revised Apr 2024.
  17. Timothy Christensen & Hyungsik Roger Moon & Frank Schorfheide, 2020. "Robust Forecasting," PIER Working Paper Archive 20-038, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    • Timothy Christensen & Hyungsik Roger Moon & Frank Schorfheide, 2020. "Robust Forecasting," Papers 2011.03153, arXiv.org, revised Dec 2020.
  18. Laura Liu, 2018. "Density Forecasts in Panel Data Models : A Semiparametric Bayesian Perspective," Finance and Economics Discussion Series 2018-036, Board of Governors of the Federal Reserve System (U.S.).
  19. Chinco, Alex & Neuhierl, Andreas & Weber, Michael, 2021. "Estimating the anomaly base rate," Journal of Financial Economics, Elsevier, vol. 140(1), pages 101-126.
  20. Timmermann, Allan & Zhu, Yinchu, 2019. "Comparing Forecasting Performance with Panel Data," CEPR Discussion Papers 13746, C.E.P.R. Discussion Papers.
  21. Fabio Canova, 2024. "Should we trust cross‐sectional multiplier estimates?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(4), pages 589-606, June.
  22. Oguzhan Cepni & Riza Demirer & Rangan Gupta & Ahmet Sensoy, 2022. "Interest rate uncertainty and the predictability of bank revenues," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1559-1569, December.
  23. Qu, Ritong & Timmermann, Allan & Zhu, Yinchu, 2023. "Comparing forecasting performance in cross-sections," Journal of Econometrics, Elsevier, vol. 237(2).
  24. Greenaway-McGrevy, Ryan, 2022. "Forecast combination for VARs in large N and T panels," International Journal of Forecasting, Elsevier, vol. 38(1), pages 142-164.
  25. Christis Katsouris, 2023. "Optimal Estimation Methodologies for Panel Data Regression Models," Papers 2311.03471, arXiv.org, revised Nov 2023.
  26. Andrew Y. Chen & Mihail Velikov, 2020. "Zeroing in on the Expected Returns of Anomalies," Finance and Economics Discussion Series 2020-039, Board of Governors of the Federal Reserve System (U.S.).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.