IDEAS home Printed from https://ideas.repec.org/r/oup/jfinec/v6y2008i3p382-406.html
   My bibliography  Save this item

Using Exponentially Weighted Quantile Regression to Estimate Value at Risk and Expected Shortfall

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Gery Geenens & Richard Dunn, 2017. "A nonparametric copula approach to conditional Value-at-Risk," Papers 1712.05527, arXiv.org, revised Oct 2019.
  2. Hamidi, Benjamin & Maillet, Bertrand & Prigent, Jean-Luc, 2014. "A dynamic autoregressive expectile for time-invariant portfolio protection strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 46(C), pages 1-29.
  3. Baur, Dirk G. & Schulze, Niels, 2009. "Financial market stability--A test," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(3), pages 506-519, July.
  4. Alex Huang, 2013. "Value at risk estimation by quantile regression and kernel estimator," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 225-251, August.
  5. Liu, Min & Taylor, James W. & Choo, Wei-Chong, 2020. "Further empirical evidence on the forecasting of volatility with smooth transition exponential smoothing," Economic Modelling, Elsevier, vol. 93(C), pages 651-659.
  6. Hautsch, Nikolaus & Schaumburg, Julia & Schienle, Melanie, 2011. "Financial network systemic risk contributions," SFB 649 Discussion Papers 2011-072, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  7. Geenens, Gery & Dunn, Richard, 2022. "A nonparametric copula approach to conditional Value-at-Risk," Econometrics and Statistics, Elsevier, vol. 21(C), pages 19-37.
  8. Peng, Wei, 2023. "The impact of oil and natural gas prices on overnight risk in exchange rates based on the MVMQ-CAViaR models," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 616-625.
  9. Julia S. Mehlitz & Benjamin R. Auer, 2021. "Time‐varying dynamics of expected shortfall in commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(6), pages 895-925, June.
  10. Juan Ignacio Pe~na & Rosa Rodriguez & Silvia Mayoral, 2022. "Tail Risk of Electricity Futures," Papers 2202.01732, arXiv.org.
  11. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2013. "Pair Copula Construction based Expected Shortfall estimation," Economics Bulletin, AccessEcon, vol. 33(2), pages 1067-1072.
  12. Huang, Jinbo & Ding, Ashley & Li, Yong & Lu, Dong, 2020. "Increasing the risk management effectiveness from higher accuracy: A novel non-parametric method," Pacific-Basin Finance Journal, Elsevier, vol. 62(C).
  13. Benjamin Hamidi & Emmanuel Jurczenko & Bertrand Maillet, 2009. "D'un multiple conditionnel en assurance de portefeuille : CAViaR pour les gestionnaires ?," Post-Print halshs-00389773, HAL.
  14. Nikolaus Hautsch & Julia Schaumburg & Melanie Schienle, 2015. "Financial Network Systemic Risk Contributions," Review of Finance, European Finance Association, vol. 19(2), pages 685-738.
  15. Vincenzo Candila & Giampiero M. Gallo & Lea Petrella, 2020. "Mixed--frequency quantile regressions to forecast Value--at--Risk and Expected Shortfall," Papers 2011.00552, arXiv.org, revised Mar 2023.
  16. Peng, Wei & Hu, Shichao & Chen, Wang & Zeng, Yu-feng & Yang, Lu, 2019. "Modeling the joint dynamic value at risk of the volatility index, oil price, and exchange rate," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 137-149.
  17. Lumengo Bonga-Bonga & Mathias mandla Manguzvane, 2020. "Assessing the extent of contagion of sovereign credit risk among BRICS countries," Economics Bulletin, AccessEcon, vol. 40(2), pages 1017-1032.
  18. Peña, Juan Ignacio & Rodríguez, Rosa & Mayoral, Silvia, 2020. "Tail risk of electricity futures," Energy Economics, Elsevier, vol. 91(C).
  19. d’Addona, Stefano & Khanom, Najrin, 2022. "Estimating tail-risk using semiparametric conditional variance with an application to meme stocks," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 241-260.
  20. Vijverberg, Chu-Ping C. & Vijverberg, Wim P.M. & Taşpınar, Süleyman, 2016. "Linking Tukey’s legacy to financial risk measurement," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 595-615.
  21. Tryggvi Jónsson & Pierre Pinson & Henrik Madsen & Henrik Aalborg Nielsen, 2014. "Predictive Densities for Day-Ahead Electricity Prices Using Time-Adaptive Quantile Regression," Energies, MDPI, vol. 7(9), pages 1-25, August.
  22. Thomas C. Chiang & Jiandong Li, 2012. "Stock Returns and Risk: Evidence from Quantile," JRFM, MDPI, vol. 5(1), pages 1-39, December.
  23. Bei, Shuhua & Yang, Aijun & Pei, Haotian & Si, Xiaoli, 2023. "Price Risk Analysis using GARCH Family Models: Evidence from Shanghai Crude Oil Futures Market," Economic Modelling, Elsevier, vol. 125(C).
  24. Jooyoung Jeon & James W. Taylor, 2012. "Using Conditional Kernel Density Estimation for Wind Power Density Forecasting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 66-79, March.
  25. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
  26. Xu, Qifa & Chen, Lu & Jiang, Cuixia & Yu, Keming, 2020. "Mixed data sampling expectile regression with applications to measuring financial risk," Economic Modelling, Elsevier, vol. 91(C), pages 469-486.
  27. Yuzhi Cai, 2021. "Estimating expected shortfall using a quantile function model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4332-4360, July.
  28. Meng, Xiaochun & Taylor, James W., 2018. "An approximate long-memory range-based approach for value at risk estimation," International Journal of Forecasting, Elsevier, vol. 34(3), pages 377-388.
  29. Schaumburg, Julia, 2012. "Predicting extreme value at risk: Nonparametric quantile regression with refinements from extreme value theory," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4081-4096.
  30. Dirk G Baur & Thomas Dimpfl, 2012. "State-dependent Momentum in International Stock Markets," Working Paper Series 169, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
  31. Haugom, Erik & Ray, Rina & Ullrich, Carl J. & Veka, Steinar & Westgaard, Sjur, 2016. "A parsimonious quantile regression model to forecast day-ahead value-at-risk," Finance Research Letters, Elsevier, vol. 16(C), pages 196-207.
  32. Chi Ming Wong & Lei Lam Olivia Ting, 2016. "A Quantile Regression Approach to the Multiple Period Value at Risk Estimation," Journal of Economics and Management, College of Business, Feng Chia University, Taiwan, vol. 12(1), pages 1-35, February.
  33. D. E. Allen & A. K. Singh & R. Powell, 2012. "A Gourmet's delight: CAViaR and the Australian stock market," Applied Economics Letters, Taylor & Francis Journals, vol. 19(15), pages 1493-1498, October.
  34. Ewa Ratuszny, 2015. "Risk Modeling of Commodities using CAViaR Models, the Encompassing Method and the Combined Forecasts," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 15, pages 129-156.
  35. Pitselis, Georgios, 2017. "Risk measures in a quantile regression credibility framework with Fama/French data applications," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 122-134.
  36. Reber, Beat, 2017. "Does mispricing, liquidity or third-party certification contribute to IPO downside risk?," International Review of Financial Analysis, Elsevier, vol. 51(C), pages 25-53.
  37. Chao, Shih-Kang & Härdle, Wolfgang Karl & Wang, Weining, 2012. "Quantile regression in risk calibration," SFB 649 Discussion Papers 2012-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  38. Saralees Nadarajah & Bo Zhang & Stephen Chan, 2014. "Estimation methods for expected shortfall," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 271-291, February.
  39. Mauro Bernardi & Ghislaine Gayraud & Lea Petrella, 2013. "Bayesian inference for CoVaR," Papers 1306.2834, arXiv.org, revised Nov 2013.
  40. Antonio Rubia Serrano & Lidia Sanchis-Marco, 2015. "Measuring Tail-Risk Cross-Country Exposures in the Banking Industry," Working Papers. Serie AD 2015-01, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
  41. Kawakami, Tabito, 2023. "Quantile prediction for Bitcoin returns using financial assets’ realized measures," Finance Research Letters, Elsevier, vol. 55(PA).
  42. Lof, Matthijs & Nyberg, Henri, 2024. "Discount rates and cash flows: A local projection approach," Journal of Banking & Finance, Elsevier, vol. 162(C).
  43. Wei, Bo & Tan, Kean Ming & He, Xuming, 2024. "Estimation of complier expected shortfall treatment effects with a binary instrumental variable," Journal of Econometrics, Elsevier, vol. 238(2).
  44. Derek Bunn, Arne Andresen, Dipeng Chen, Sjur Westgaard, 2016. "Analysis and Forecasting of Electricty Price Risks with Quantile Factor Models," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
  45. Yan Fang & Jian Li & Yinglin Liu & Yunfan Zhao, 2023. "Semiparametric estimation of expected shortfall and its application in finance," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 835-851, July.
  46. repec:hum:wpaper:sfb649dp2012-006 is not listed on IDEAS
  47. Zhu, Ke, 2023. "A new generalized exponentially weighted moving average quantile model and its statistical inference," Journal of Econometrics, Elsevier, vol. 237(1).
  48. Emmanuel Jurczenko & Bertrand Maillet & Paul Merlin, 2008. "Efficient Frontier for Robust Higher-order Moment Portfolio Selection," Post-Print halshs-00336475, HAL.
  49. Rubia, Antonio & Sanchis-Marco, Lidia, 2013. "On downside risk predictability through liquidity and trading activity: A dynamic quantile approach," International Journal of Forecasting, Elsevier, vol. 29(1), pages 202-219.
  50. Sander Barendse, 2017. "Interquantile Expectation Regression," Tinbergen Institute Discussion Papers 17-034/III, Tinbergen Institute.
  51. Yuzhi Cai & Guodong Li, 2018. "A novel approach to modelling the distribution of financial returns," Working Papers 2018-22, Swansea University, School of Management.
  52. Eliana Christou & Michael Grabchak, 2022. "Estimation of Expected Shortfall Using Quantile Regression: A Comparison Study," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 725-753, August.
  53. Allen, D.E. & Powell, R.J. & Singh, A.K., 2016. "Take it to the limit: Innovative CVaR applications to extreme credit risk measurement," European Journal of Operational Research, Elsevier, vol. 249(2), pages 465-475.
  54. Hautsch, Nikolaus & Schaumburg, Julia & Schienle, Melanie, 2012. "Financial network systemic risk contributions," SFB 649 Discussion Papers 2012-053, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  55. Zhu, Dongming & Galbraith, John W., 2011. "Modeling and forecasting expected shortfall with the generalized asymmetric Student-t and asymmetric exponential power distributions," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 765-778, September.
  56. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
  57. Quang Trinh, Vu & Duong Cao, Ngan & Li, Teng & Elnahass, Marwa, 2023. "Social capital, trust, and bank tail risk: The value of ESG rating and the effects of crisis shocks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 83(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.