IDEAS home Printed from https://ideas.repec.org/r/nbr/nberwo/18084.html
   My bibliography  Save this item

Financial Risk Measurement for Financial Risk Management

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Belloni, Alexandre. & Chen, Mingli & Chernozhukov, Victor, 2016. "Quantile Graphical Models: Prediction and Conditional Independence with Applications to Financial Risk Management," The Warwick Economics Research Paper Series (TWERPS) 1125, University of Warwick, Department of Economics.
  2. Mert Demirer & Francis X. Diebold & Laura Liu & Kamil Yilmaz, 2018. "Estimating global bank network connectedness," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(1), pages 1-15, January.
  3. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
  4. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
  5. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2018. "Modeling and forecasting (un)reliable realized covariances for more reliable financial decisions," Journal of Econometrics, Elsevier, vol. 207(1), pages 71-91.
  6. Alexandre Belloni & Mingli Chen & Victor Chernozhukov, 2016. "Quantile Graphical Models: Prediction and Conditional Independence with Applications to Systemic Risk," Papers 1607.00286, arXiv.org, revised Oct 2019.
  7. Diebold, Francis X. & Yilmaz, Kamil, 2015. "Financial and Macroeconomic Connectedness: A Network Approach to Measurement and Monitoring," OUP Catalogue, Oxford University Press, number 9780199338306.
  8. Fengler, Matthias R. & Okhrin, Ostap, 2016. "Managing risk with a realized copula parameter," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 131-152.
  9. Daniele Massacci, 2017. "Tail Risk Dynamics in Stock Returns: Links to the Macroeconomy and Global Markets Connectedness," Management Science, INFORMS, vol. 63(9), pages 3072-3089, September.
  10. Bent Jesper Christensen & Rasmus Tangsgaard Varneskov, 2021. "Dynamic Global Currency Hedging [Arbitrage in the Foreign Exchange Market: Turning on the Microscope]," Journal of Financial Econometrics, Oxford University Press, vol. 19(1), pages 97-127.
  11. F. Lilla, 2017. "High Frequency vs. Daily Resolution: the Economic Value of Forecasting Volatility Models - 2nd ed," Working Papers wp1099, Dipartimento Scienze Economiche, Universita' di Bologna.
  12. Massacci, Daniele, 2014. "A two-regime threshold model with conditional skewed Student t distributions for stock returns," Economic Modelling, Elsevier, vol. 43(C), pages 9-20.
  13. Nikolaus Hautsch & Lada M. Kyj & Peter Malec, 2015. "Do High‐Frequency Data Improve High‐Dimensional Portfolio Allocations?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 263-290, March.
  14. Christoffersen, Peter & Lunde, Asger & Olesen, Kasper V., 2019. "Factor Structure in Commodity Futures Return and Volatility," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 54(3), pages 1083-1115, June.
  15. Yu Chen & Jie Hu & Weiping Zhang, 2020. "Too Connected to Fail? Evidence from a Chinese Financial Risk Spillover Network," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 28(6), pages 78-100, November.
  16. Isao Ishida & Virmantas Kvedaras, 2015. "Modeling Autoregressive Processes with Moving-Quantiles-Implied Nonlinearity," Econometrics, MDPI, vol. 3(1), pages 1-53, January.
  17. Dias, Alexandra, 2013. "Market capitalization and Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5248-5260.
  18. Francis X. Diebold, 2020. ""Big Data" and its Origins," Papers 2008.05835, arXiv.org, revised Jan 2021.
  19. Han-Ching Huang & Yong-Chern Su & Jen-Tien Tsui, 2015. "Asymmetric GARCH Value-at-Risk over MSCI in Financial Crisis," International Journal of Economics and Financial Issues, Econjournals, vol. 5(2), pages 390-398.
  20. Duan, Yunlong & Mu, Chang & Yang, Meng & Deng, Zhiqing & Chin, Tachia & Zhou, Li & Fang, Qifeng, 2021. "Study on early warnings of strategic risk during the process of firms’ sustainable innovation based on an optimized genetic BP neural networks model: Evidence from Chinese manufacturing firms," International Journal of Production Economics, Elsevier, vol. 242(C).
  21. BALTES Nicolae & DRAGOE Alexandra-Gabriela-Maria, 2017. "Estimating The Return Of The Financial Titles Of The Companies From The Manufacturing Industry, Listed On The Bucharest Stock Exchange," Revista Economica, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 69(3), pages 19-28, August.
  22. Richard Friberg & Mark Sanctuary, 2020. "Exchange rate risk and the skill composition of labor," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 156(2), pages 287-312, May.
  23. Nolte, Ingmar & Xu, Qi, 2015. "The economic value of volatility timing with realized jumps," Journal of Empirical Finance, Elsevier, vol. 34(C), pages 45-59.
  24. Cipollini, Fabrizio & Gallo, Giampiero M., 2019. "Modeling Euro STOXX 50 volatility with common and market-specific components," Econometrics and Statistics, Elsevier, vol. 11(C), pages 22-42.
  25. Conrad, Christian & Glas, Alexander, 2018. "‘Déjà vol’ revisited: Survey forecasts of macroeconomic variables predict volatility in the cross-section of industry portfolios," Working Papers 0655, University of Heidelberg, Department of Economics.
  26. Fengler, Matthias R. & Herwartz, Helmut, 2015. "Measuring spot variance spillovers when (co)variances are time-varying - the case of multivariate GARCH models," MPRA Paper 72197, University Library of Munich, Germany, revised 10 Jun 2016.
  27. Serena Ng & Jonathan H. Wright, 2013. "Facts and Challenges from the Great Recession for Forecasting and Macroeconomic Modeling," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1120-1154, December.
  28. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
  29. Mustafayeva, Konul & Wang, Weining, 2020. "Non-Parametric Estimation of Spot Covariance Matrix with High-Frequency Data," IRTG 1792 Discussion Papers 2020-025, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
  30. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016. "Exploiting the errors: A simple approach for improved volatility forecasting," Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
  31. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2020. "Multivariate leverage effects and realized semicovariance GARCH models," Journal of Econometrics, Elsevier, vol. 217(2), pages 411-430.
  32. Hoga, Yannick, 2021. "The uncertainty in extreme risk forecasts from covariate-augmented volatility models," International Journal of Forecasting, Elsevier, vol. 37(2), pages 675-686.
  33. Bollerslev, Tim & Todorov, Viktor & Xu, Lai, 2015. "Tail risk premia and return predictability," Journal of Financial Economics, Elsevier, vol. 118(1), pages 113-134.
  34. F. Lilla, 2016. "High Frequency vs. Daily Resolution: the Economic Value of Forecasting Volatility Models," Working Papers wp1084, Dipartimento Scienze Economiche, Universita' di Bologna.
  35. Linton, Oliver & Whang, Yoon-Jae & Yen, Yu-Min, 2016. "A nonparametric test of a strong leverage hypothesis," Journal of Econometrics, Elsevier, vol. 194(1), pages 153-186.
  36. Nurulhasanah Abdul Rahman & Rafisah Mat Radzi, 2015. "Determinants of Effective Financial Risk Management in Small Business: A Theoretical Framework," Information Management and Business Review, AMH International, vol. 7(2), pages 87-92.
  37. David Happersberger & Harald Lohre & Ingmar Nolte, 2020. "Estimating portfolio risk for tail risk protection strategies," European Financial Management, European Financial Management Association, vol. 26(4), pages 1107-1146, September.
  38. repec:hum:wpaper:sfb649dp2013-014 is not listed on IDEAS
  39. Alfeus, Mesias & Nikitopoulos, Christina Sklibosios, 2022. "Forecasting volatility in commodity markets with long-memory models," Journal of Commodity Markets, Elsevier, vol. 28(C).
  40. Hsuan‐Ling Chang & Yen‐Cheng Chang & Hung‐Wen Cheng & Po‐Hsiang Peng & Kevin Tseng, 2019. "Jump variance risk: Evidence from option valuation and stock returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(7), pages 890-915, July.
  41. Liu, Zhenya & Lu, Shanglin & Li, Bo & Wang, Shixuan, 2023. "Time series momentum and reversal: Intraday information from realized semivariance," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 54-77.
  42. Olkhov, Victor, 2021. "To VaR, or Not to VaR, That is the Question," MPRA Paper 105458, University Library of Munich, Germany.
  43. Diebold, Francis X. & Yılmaz, Kamil, 2023. "Reprint of: On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 234(S), pages 70-90.
  44. Symitsi, Efthymia & Symeonidis, Lazaros & Kourtis, Apostolos & Markellos, Raphael, 2018. "Covariance forecasting in equity markets," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 153-168.
  45. Hammadi Zouari, 2022. "On the Effectiveness of Stock Index Futures for Tail Risk Protection," International Journal of Economics and Financial Issues, Econjournals, vol. 12(3), pages 38-52, May.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.