IDEAS home Printed from https://ideas.repec.org/r/nat/natcli/v3y2013i2d10.1038_nclimate1695.html
   My bibliography  Save this item

Last chance for carbon capture and storage

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Fankhauser, Samuel & Jotzo, Frank, 2017. "Economic growth and development with low-carbon energy," LSE Research Online Documents on Economics 86850, London School of Economics and Political Science, LSE Library.
  2. Bobo Zheng & Jiuping Xu, 2014. "Carbon Capture and Storage Development Trends from a Techno-Paradigm Perspective," Energies, MDPI, vol. 7(8), pages 1-30, August.
  3. Sinn, Hans-Werner, 2017. "Buffering volatility: A study on the limits of Germany's energy revolution," European Economic Review, Elsevier, vol. 99(C), pages 130-150.
  4. T. Gasser & C. Guivarch & K. Tachiiri & C. D. Jones & P. Ciais, 2015. "Negative emissions physically needed to keep global warming below 2 °C," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
  5. Choi, Seungyeong & Yun, Maroosol & Kim, Kiwoong & Park, Yong-Ki & Cho, Hyung Hee, 2022. "Energy-efficient design of dual circulating fluidized bed system for CCUS by multi-tube configuration with junctions," Energy, Elsevier, vol. 245(C).
  6. Höller, Samuel & Viebahn, Peter, 2016. "Facing the uncertainty of CO2 storage capacity in China by developing different storage scenarios," Energy Policy, Elsevier, vol. 89(C), pages 64-73.
  7. Madalina-Gabriela ANGHEL & Constantin ANGHELACHE & Alexandru MANOLE & Ana CARP, 2017. "The Strategy Of The European Union Member States In The Field Of Energy," Romanian Statistical Review Supplement, Romanian Statistical Review, vol. 65(8), pages 19-34, August.
  8. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "South Korean energy scenarios show how nuclear power can reduce future energy and environmental costs," Energy Policy, Elsevier, vol. 74(C), pages 569-578.
  9. Wang, Nan & Akimoto, Keigo & Nemet, Gregory F., 2021. "What went wrong? Learning from three decades of carbon capture, utilization and sequestration (CCUS) pilot and demonstration projects," Energy Policy, Elsevier, vol. 158(C).
  10. Wim Carton & Adeniyi Asiyanbi & Silke Beck & Holly J. Buck & Jens F. Lund, 2020. "Negative emissions and the long history of carbon removal," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(6), November.
  11. Shuohan Liu & Junqiang Hu & Fan Zhang & Jianzhong Zhu & Xiaoyang Shi & Lei Wang, 2024. "Robust Enhancement of Direct Air Capture of CO 2 Efficiency Using Micro-Sized Anion Exchange Resin Particles," Sustainability, MDPI, vol. 16(9), pages 1-15, April.
  12. Guerra, Omar J. & Tejada, Diego A. & Reklaitis, Gintaras V., 2019. "Climate change impacts and adaptation strategies for a hydro-dominated power system via stochastic optimization," Applied Energy, Elsevier, vol. 233, pages 584-598.
  13. Quarton, Christopher J. & Samsatli, Sheila, 2020. "The value of hydrogen and carbon capture, storage and utilisation in decarbonising energy: Insights from integrated value chain optimisation," Applied Energy, Elsevier, vol. 257(C).
  14. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies," Applied Energy, Elsevier, vol. 136(C), pages 712-725.
  15. Yiwei Wu & Hongyu Zhang & Shuaian Wang & Lu Zhen, 2023. "Mathematical Optimization of Carbon Storage and Transport Problem for Carbon Capture, Use, and Storage Chain," Mathematics, MDPI, vol. 11(12), pages 1-14, June.
  16. Tamaki, Tetsuya & Nozawa, Wataru & Managi, Shunsuke, 2017. "Evaluation of the ocean ecosystem: climate change modelling with backstop technology," MPRA Paper 80549, University Library of Munich, Germany.
  17. Sun, Xiaolong & Alcalde, Juan & Bakhtbidar, Mahdi & Elío, Javier & Vilarrasa, Víctor & Canal, Jacobo & Ballesteros, Julio & Heinemann, Niklas & Haszeldine, Stuart & Cavanagh, Andrew & Vega-Maza, David, 2021. "Hubs and clusters approach to unlock the development of carbon capture and storage – Case study in Spain," Applied Energy, Elsevier, vol. 300(C).
  18. Barbour, Edward & Wilson, I.A. Grant & Radcliffe, Jonathan & Ding, Yulong & Li, Yongliang, 2016. "A review of pumped hydro energy storage development in significant international electricity markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 421-432.
  19. Shakerian, Farid & Kim, Ki-Hyun & Szulejko, Jan E. & Park, Jae-Woo, 2015. "A comparative review between amines and ammonia as sorptive media for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 148(C), pages 10-22.
  20. Xue‐Fei Wang & Long Xiong & Li Li & Jun‐Jun Zhong, 2020. "Effect of heat treatment temperature on CO2 capture of nitrogen‐enriched porous carbon fibers," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(2), pages 461-471, April.
  21. Riahi, Keywan & Kriegler, Elmar & Johnson, Nils & Bertram, Christoph & den Elzen, Michel & Eom, Jiyong & Schaeffer, Michiel & Edmonds, Jae & Isaac, Morna & Krey, Volker & Longden, Thomas & Luderer, Gu, 2015. "Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 8-23.
  22. Guerra, Omar J. & Tejada, Diego A. & Reklaitis, Gintaras V., 2016. "An optimization framework for the integrated planning of generation and transmission expansion in interconnected power systems," Applied Energy, Elsevier, vol. 170(C), pages 1-21.
  23. Capellán-Pérez, Iñigo & Mediavilla, Margarita & de Castro, Carlos & Carpintero, Óscar & Miguel, Luis Javier, 2014. "Fossil fuel depletion and socio-economic scenarios: An integrated approach," Energy, Elsevier, vol. 77(C), pages 641-666.
  24. Tamaki, Tetsuya & Nozawa, Wataru & Managi, Shunsuke, 2017. "Evaluation of the ocean ecosystem: Climate change modelling with backstop technologies," Applied Energy, Elsevier, vol. 205(C), pages 428-439.
  25. Tvinnereim, Endre & Ivarsflaten, Elisabeth, 2016. "Fossil fuels, employment, and support for climate policies," Energy Policy, Elsevier, vol. 96(C), pages 364-371.
  26. Fan, Jing-Li & Shen, Shuo & Wei, Shi-Jie & Xu, Mao & Zhang, Xian, 2020. "Near-term CO2 storage potential for coal-fired power plants in China: A county-level source-sink matching assessment," Applied Energy, Elsevier, vol. 279(C).
  27. Yangsiyu Lu & Francois Cohen & Stephen M. Smith & Alexander Pfeiffer, 2022. "Plant conversions and abatement technologies cannot prevent stranding of power plant assets in 2 °C scenarios," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  28. Amin Shokrollahi & Afshin Tatar & Abbas Zeinijahromi, 2024. "Advancing CO 2 Solubility Prediction in Brine Solutions with Explainable Artificial Intelligence for Sustainable Subsurface Storage," Sustainability, MDPI, vol. 16(17), pages 1-26, August.
  29. Alshammari, Yousef M., 2021. "Scenario analysis for energy transition in the chemical industry: An industrial case study in Saudi Arabia," Energy Policy, Elsevier, vol. 150(C).
  30. Marcucci, Adriana & Fragkos, Panagiotis, 2015. "Drivers of regional decarbonization through 2100: A multi-model decomposition analysis," Energy Economics, Elsevier, vol. 51(C), pages 111-124.
  31. Coilín ÓhAiseadha & Gerré Quinn & Ronan Connolly & Michael Connolly & Willie Soon, 2020. "Energy and Climate Policy—An Evaluation of Global Climate Change Expenditure 2011–2018," Energies, MDPI, vol. 13(18), pages 1-49, September.
  32. Elsir, Mohamed & Al-Sumaiti, Ameena Saad & El Moursi, Mohamed Shawky, 2024. "Towards energy transition: A novel day-ahead operation scheduling strategy for demand response and hybrid energy storage systems in smart grid," Energy, Elsevier, vol. 293(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.