IDEAS home Printed from https://ideas.repec.org/r/kap/transp/v35y2008i4p467-484.html
   My bibliography  Save this item

Modelling daily activity program generation considering within-day and day-to-day dynamics in activity-travel behaviour

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Linda Nijland & Theo Arentze & Harry Timmermans, 2014. "Multi-day activity scheduling reactions to planned activities and future events in a dynamic model of activity-travel behavior," Journal of Geographical Systems, Springer, vol. 16(1), pages 71-87, January.
  2. Crawford, F. & Watling, D.P. & Connors, R.D., 2017. "A statistical method for estimating predictable differences between daily traffic flow profiles," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 196-213.
  3. Limanond, Thirayoot & Jomnonkwao, Sajjakaj & Watthanaklang, Duangdao & Ratanavaraha, Vatanavongs & Siridhara, Siradol, 2011. "How vehicle ownership affect time utilization on study, leisure, social activities, and academic performance of university students? A case study of engineering freshmen in a rural university in Thail," Transport Policy, Elsevier, vol. 18(5), pages 719-726, September.
  4. Yu Ding & Huapu Lu & Lei Zhang, 2016. "An analysis of activity time use on vehicle usage rationed days," Transportation, Springer, vol. 43(1), pages 145-158, January.
  5. Wissam Qassim Al-Salih & Domokos Esztergár Kiss, 2022. "Activity Chains Modelling of Travellers by Using Logit Models Based on the Utility Function," Sustainability, MDPI, vol. 14(5), pages 1-36, March.
  6. Deschaintres, Elodie & Morency, Catherine & Trépanier, Martin, 2022. "Cross-analysis of the variability of travel behaviors using one-day trip diaries and longitudinal data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 163(C), pages 228-246.
  7. Daniel Jonsson & Anders Karlström & Masoud Fadaei Oshyani & Per Olsson, 2014. "Reconciling User Benefit and Time-Geography-Based Individual Accessibility Measures," Environment and Planning B, , vol. 41(6), pages 1031-1043, December.
  8. Jara-Díaz, Sergio & Rosales-Salas, Jorge, 2015. "Understanding time use: Daily or weekly data?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 76(C), pages 38-57.
  9. Chandra R. Bhat & Subodh K. Dubey & Mohammad Jobair Bin Alam & Waleed H. Khushefati, 2015. "A New Spatial Multiple Discrete-Continuous Modeling Approach To Land Use Change Analysis," Journal of Regional Science, Wiley Blackwell, vol. 55(5), pages 801-841, November.
  10. Lee, Jae Hyun & Goulias, Konstadinos G., 2018. "Companionship and time investment in social fields at different life cycle stages: Implications for activity and travel modeling and simulation," Research in Transportation Economics, Elsevier, vol. 68(C), pages 18-28.
  11. Wang, Bobin & Shao, Chunfu & Ji, Xun, 2017. "Dynamic analysis of holiday travel behaviour with integrated multimodal travel information usage: A life-oriented approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 104(C), pages 255-280.
  12. Pinjari, Abdul Rawoof & Augustin, Bertho & Sivaraman, Vijayaraghavan & Faghih Imani, Ahmadreza & Eluru, Naveen & Pendyala, Ram M., 2016. "Stochastic frontier estimation of budgets for Kuhn–Tucker demand systems: Application to activity time-use analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 117-133.
  13. Sharmeen, Fariya & Arentze, Theo & Timmermans, Harry, 2014. "An analysis of the dynamics of activity and travel needs in response to social network evolution and life-cycle events: A structural equation model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 159-171.
  14. Cinzia Cirillo & Kay Axhausen, 2010. "Dynamic model of activity-type choice and scheduling," Transportation, Springer, vol. 37(1), pages 15-38, January.
  15. Rodrigo J. Tapia & Gerard Jong & Ana M. Larranaga & Helena B. Bettella Cybis, 2021. "Exploring Multiple‐discreteness in Freight Transport. A Multiple Discrete Extreme Value Model Application for Grain Consolidators in Argentina," Networks and Spatial Economics, Springer, vol. 21(3), pages 581-608, September.
  16. Sikder, Sujan & Pinjari, Abdul Rawoof, 2013. "The benefits of allowing heteroscedastic stochastic distributions in multiple discrete-continuous choice models," Journal of choice modelling, Elsevier, vol. 9(C), pages 39-56.
  17. Chandra Bhat & Konstadinos Goulias & Ram Pendyala & Rajesh Paleti & Raghuprasad Sidharthan & Laura Schmitt & Hsi-Hwa Hu, 2013. "A household-level activity pattern generation model with an application for Southern California," Transportation, Springer, vol. 40(5), pages 1063-1086, September.
  18. Elisabetta Cherchi & Cinzia Cirillo, 2014. "Understanding variability, habit and the effect of long period activity plan in modal choices: a day to day, week to week analysis on panel data," Transportation, Springer, vol. 41(6), pages 1245-1262, November.
  19. Linda Nijland & Theo Arentze & Harry Timmermans, 2013. "Representing and estimating interactions between activities in a need-based model of activity generation," Transportation, Springer, vol. 40(2), pages 413-430, February.
  20. Palma, David & Hess, Stephane, 2022. "Extending the Multiple Discrete Continuous (MDC) modelling framework to consider complementarity, substitution, and an unobserved budget," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 13-35.
  21. Habib, Khandker Nurul & Sasic, Ana & Weis, Claude & Axhausen, Kay, 2013. "Investigating the nonlinear relationship between transportation system performance and daily activity–travel scheduling behaviour," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 342-357.
  22. Linda Nijland & Theo Arentze & Harry Timmermans, 2012. "Incorporating planned activities and events in a dynamic multi-day activity agenda generator," Transportation, Springer, vol. 39(4), pages 791-806, July.
  23. Yu Ding & Huapu Lu & Lei Zhang, 2016. "An analysis of activity time use on vehicle usage rationed days," Transportation, Springer, vol. 43(1), pages 145-158, January.
  24. Arentze, Theo A. & Ettema, Dick & Timmermans, Harry J.P., 2011. "Estimating a model of dynamic activity generation based on one-day observations: Method and results," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 447-460, February.
  25. Khandker Habib, 2011. "A random utility maximization (RUM) based dynamic activity scheduling model: Application in weekend activity scheduling," Transportation, Springer, vol. 38(1), pages 123-151, January.
  26. Bernardo, Christina & Paleti, Rajesh & Hoklas, Megan & Bhat, Chandra, 2015. "An empirical investigation into the time-use and activity patterns of dual-earner couples with and without young children," Transportation Research Part A: Policy and Practice, Elsevier, vol. 76(C), pages 71-91.
  27. Ralph I. Williams & Torsten M. Pieper & Franz W. Kellermanns & Joseph H. Astrachan, 2019. "Family business goal formation: a literature review and discussion of alternative algorithms," Management Review Quarterly, Springer, vol. 69(3), pages 329-349, September.
  28. Kang, Hejun & Scott, Darren M., 2010. "Exploring day-to-day variability in time use for household members," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(8), pages 609-619, October.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.